Econometrics and data science : apply data science techniques to model complex problems and implement solutions for economic problems / Tshepo Chris Nokeri.

Get up to speed on the application of machine learning approaches in macroeconomic research. This book brings together economics and data science. Author Tshepo Chris Nokeri begins by introducing you to covariance analysis, correlation analysis, cross-validation, hyperparameter optimization, regress...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Skillsoft)
Main Author: Nokeri, Tshepo Chris (Author)
Format: Electronic eBook
Language:English
Published: New York : Apress, [2022]
Subjects:

MARC

LEADER 00000cam a2200000 i 4500
001 b12302700
005 20231215081412.0
006 m o d
007 cr |||||||||||
008 211030s2022 nyu o 000 0 eng d
019 |a 1280604423  |a 1281136930  |a 1281968735  |a 1283846954 
020 |a 9781484274347  |q (electronic bk.) 
020 |a 1484274342  |q (electronic bk.) 
020 |z 1484274334 
020 |z 9781484274330 
024 7 |a 10.1007/978-1-4842-7434-7  |2 doi 
029 1 |a AU@  |b 000070128307 
029 1 |a AU@  |b 000070164987 
029 1 |a AU@  |b 000070278386 
035 |a (OCoLC)sks1281249650 
035 |a (OCoLC)1281249650  |z (OCoLC)1280604423  |z (OCoLC)1281136930  |z (OCoLC)1281968735  |z (OCoLC)1283846954 
037 |a sks158238 
040 |a YDX  |b eng  |e rda  |e pn  |c YDX  |d N$T  |d YDX  |d OCLCF  |d OCLCO  |d GW5XE  |d EBLCP  |d TOH  |d ORMDA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a HB139  |b .N65 2022 
100 1 |a Nokeri, Tshepo Chris,  |e author. 
245 1 0 |a Econometrics and data science :  |b apply data science techniques to model complex problems and implement solutions for economic problems /  |c Tshepo Chris Nokeri. 
264 1 |a New York :  |b Apress,  |c [2022] 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
520 |a Get up to speed on the application of machine learning approaches in macroeconomic research. This book brings together economics and data science. Author Tshepo Chris Nokeri begins by introducing you to covariance analysis, correlation analysis, cross-validation, hyperparameter optimization, regression analysis, and residual analysis. In addition, he presents an approach to contend with multi-collinearity. He then debunks a time series model recognized as the additive model. He reveals a technique for binarizing an economic feature to perform classification analysis using logistic regression. He brings in the Hidden Markov Model, used to discover hidden patterns and growth in the world economy. The author demonstrates unsupervised machine learning techniques such as principal component analysis and cluster analysis. Key deep learning concepts and ways of structuring artificial neural networks are explored along with training them and assessing their performance. The Monte Carlo simulation technique is applied to stimulate the purchasing power of money in an economy. Lastly, the Structural Equation Model (SEM) is considered to integrate correlation analysis, factor analysis, multivariate analysis, causal analysis, and path analysis. After reading this book, you should be able to recognize the connection between econometrics and data science. You will know how to apply a machine learning approach to modeling complex economic problems and others beyond this book. You will know how to circumvent and enhance model performance, together with the practical implications of a machine learning approach in econometrics, and you will be able to deal with pressing economic problems. What You Will LearnExamine complex, multivariate, linear-causal structures through the path and structural analysis technique, including non-linearity and hidden statesBe familiar with practical applications of machine learning and deep learning in econometricsUnderstand theoretical framework and hypothesis development, and techniques for selecting appropriate modelsDevelop, test, validate, and improve key supervised (i.e., regression and classification) and unsupervised (i.e., dimension reduction and cluster analysis) machine learning models, alongside neural networks, Markov, and SEM modelsRepresent and interpret data and models Who This Book Is ForBeginning and intermediate data scientists, economists, machine learning engineers, statisticians, and business executives 
588 0 |a Print version record. 
505 0 |a Chapter 1 Introduction to Econometrics -- Chapter 2 Univariate Consumption Study Applying Regression -- Chapter 3 Multivariate Consumption Study Applying Regression -- Chapter 4 Forecasting Growth -- Chapter 5 Classifying Economic Data Applying Logistic Regression -- Chapter 6 Finding Hidden Patterns in World Economy and Growth -- Chapter 7 Clustering GNI Per Capita on a Continental Level -- Chapter 8 Solving Economic Problems Applying Artificial Neural Networks -- Chapter 9 Inflation Simulation -- Chapter 10 Economic Causal Analysis Applying Structural Equation Modelling. 
650 0 |a Econometrics. 
650 0 |a Quantitative research. 
650 7 |a Econometrics  |2 fast 
650 7 |a Quantitative research  |2 fast 
776 0 8 |i Print version:  |z 1484274334  |z 9781484274330  |w (OCoLC)1264137950 
776 0 8 |i Print version:  |a Nokeri, Tshepo Chris.  |t Econometrics and data science.  |d New York : Apress, 2022  |z 9781484274330  |w (OCoLC)1285694226 
856 4 0 |u https://ucblibraries.skillport.com/skillportfe/main.action?assetid=158238  |z Full Text (via Skillsoft) 
915 |a - 
956 |a Skillsoft ITPro 
956 |b Skillsoft ITPro Skillport Collection 
994 |a 92  |b COD 
998 |b Subsequent record output 
999 f f |i fbdb914f-18d6-560c-ad5b-120a7400b497  |s 61973664-4c42-5912-950f-50a7a2619b10 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e HB139 .N65 2022  |h Library of Congress classification  |i web  |n 1