A functorial model theory : newer applications to algebraic topology, descriptive sets, and computing categories topos / Cyrus F. Nourani.

This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a ne...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ProQuest)
Main Author: Nourani, Cyrus F (Author)
Format: eBook
Language:English
Published: Toronto ; New Jersey : Apple Academic Press, [2014]
Subjects:

MARC

LEADER 00000cam a2200000Mi 4500
001 b12306347
003 CoU
005 20220624053332.0
006 m o d
007 cr |||||||||||
008 140725t20142014onca ob 001 0 eng d
019 |a 868488087 
020 |a 1482231506  |q (electronic bk.) 
020 |a 9781482231502  |q (electronic bk.) 
020 |z 9781926895925  |q (hardcover) 
020 |z 1926895924  |q (hardcover) 
035 |a (OCoLC)ebqac884613734 
035 |a (OCoLC)884613734  |z (OCoLC)868488087 
037 |a ebqac1383561 
040 |a YDXCP  |b eng  |e rda  |e pn  |c YDXCP  |d OCLCO  |d OCLCQ  |d OCLCF  |d EBLCP  |d STF  |d CRCPR  |d DEBSZ  |d OCLCQ  |d COO  |d OCLCQ  |d SFB  |d OCLCO 
049 |a GWRE 
050 4 |a QA169  |b .N695 2014 
055 8 |a QA169  |b N69 2014 
055 9 |a B-161568 
100 1 |a Nourani, Cyrus F,  |e author. 
245 1 2 |a A functorial model theory :  |b newer applications to algebraic topology, descriptive sets, and computing categories topos /  |c Cyrus F. Nourani. 
264 1 |a Toronto ;  |a New Jersey :  |b Apple Academic Press,  |c [2014] 
264 4 |c ©2014. 
300 |a 1 online resource (x, 292 pages :) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; About the Author; Contents; Preface; Chapter 1: Introduction; Chapter 2: Categorical Preliminaries; Chapter 3: Infinite Language Categories; Chapter 4: Functorial Fragment Model Theory; Chapter 5: Algebraic Theories, Categories, and Models; Chapter 6: Generic Functorial Models and Topos; Chapter 7: Models, Sheaves, and Topos; Chapter 8: Functors on Fields; Chapter 9: Filters and Ultraproducts on Projective Sets; Chapter 10: A Glimpse on Algebraic Set Theory; Bibliography. 
520 |a This book is an introduction to a functorial model theory based on infinitary language categories. The author introduces the properties and foundation of these categories before developing a model theory for functors starting with a countable fragment of an infinitary language. He also presents a new technique for generating generic models with categories by inventing infinite language categories and functorial model theory. In addition, the book covers string models, limit models, and functorial models. 
588 0 |a Print version record. 
650 0 |a Functor theory. 
650 0 |a Model theory. 
650 7 |a Functor theory.  |2 fast  |0 (OCoLC)fst00936137. 
650 7 |a Model theory.  |2 fast  |0 (OCoLC)fst01024368. 
776 0 8 |i Print version:  |a Nourani, Cyrus F.  |t Functorial model theory.  |z 9781926895925  |z 1926895924  |w (DLC) 2013955135. 
856 4 0 |u https://ebookcentral.proquest.com/lib/ucb/detail.action?docID=1383561  |z Full Text (via ProQuest) 
907 |a .b123063474  |b 07-07-22  |c 07-07-22 
998 |a web  |b  - -   |c f  |d b   |e z  |f eng  |g onc  |h 2  |i 1 
915 |a M 
956 |a Ebook Central Academic Complete 
956 |b Ebook Central Academic Complete 
999 f f |i 76cf07a1-916a-5531-924b-d081de8ff468  |s 70f06715-19d2-5ee2-85fd-79e3b0013b2c 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA169 .N695 2014  |h Library of Congress classification  |i web  |n 1