MARC

LEADER 00000nam a22000003u 4500
001 b12824623
003 CoU
005 20220803040000.0
006 m o d f
007 cr |||||||||||
008 221019e20210803||| o| f0|||||eng|d
035 |a (TOE)ost1830666 
035 |a (TOE)1830666 
040 |a TOE  |c TOE 
049 |a GDWR 
072 1 |a 72  |2 edbsc 
072 1 |a 73  |2 edbsc 
086 0 |a E 1.99:1830666 
086 0 |a E 1.99:1830666 
245 0 0 |a Lipkin model on a quantum computer  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of High Energy Physics ;  |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2021. 
300 |a Size: Article No. 024305 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 08/03/2021. 
500 |a "Journal ID: ISSN 2469-9985." 
500 |a "Other: DE-SC0019465." 
500 |a "PHY-1806368." 
500 |a Cervia, Michael J. ; Balantekin, A. B. ; Coppersmith, S. N. ; Johnson, Calvin W. ; Love, Peter J. ; Poole, C. ; Robbins, K. ; Saffman, M. ;  
500 |a Univ. of Wisconsin, Madison, WI (United States) 
520 3 |a Atomic nuclei are important laboratories for exploring and testing new insights into the universe, such as experiments to directly detect dark matter or explore properties of neutrinos. The targets of interest are often heavy, complex nuclei that challenge our ability to reliably model them (as well as quantify the uncertainty of those models) with classical computers. Hence there is great interest in applying quantum computation to nuclear structure for these applications. As an early step in this direction, especially with regards to the uncertainties in the relevant quantum calculations, we develop circuits to implement variational quantum eigensolver (VQE) algorithms for the Lipkin-Meshkov-Glick model, which is often used in the nuclear physics community as a testbed for many-body methods. Here, we present quantum circuits for VQE for two and three particles and discuss the construction of circuits for more particles. Implementing the VQE for a two-particle system on the IBM Quantum Experience, we identify initialization and two-qubit gates as the largest sources of error. We find that error mitigation procedures reduce the errors in the results significantly, but additional quantum hardware improvements are needed for quantum calculations to be sufficiently accurate to be competitive with the best current classical methods. 
536 |b SC0019465. 
536 |b PHY-1806368. 
650 7 |a 72 physics of elementary particles and fields  |2 local. 
650 7 |a Effective field theory  |2 local. 
650 7 |a Particle dark matter  |2 local. 
650 7 |a Quantum algorithms  |2 local. 
650 7 |a Quantum information with solid state qubits  |2 local. 
650 7 |a Manybody techniques  |2 local. 
650 7 |a Nuclear manybody theory  |2 local. 
650 7 |a 73 nuclear physics and radiation physics  |2 local. 
650 7 |a Physics of elementary particles and fields  |2 local. 
650 7 |a Many-body techniques  |2 local. 
650 7 |a Nuclear many-body theory  |2 local. 
650 7 |a Nuclear physics and radiation physics  |2 local. 
710 1 |a United States.  |b Department of Energy.  |b Office of High Energy Physics.  |4 spn. 
710 2 |a National Science Foundation (U.S.).  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Chicago Operations Office.  |f res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1830666  |z Full Text (via OSTI) 
907 |a .b128246236  |b 02-28-23  |c 12-08-22 
998 |a web  |b 12-08-22  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i eaaf0792-cff2-523d-b874-2843ceee2742  |s c71495f5-b006-5236-a103-bcbf98f3ce3f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:1830666  |h Superintendent of Documents classification  |i web  |n 1