Impacts of Stochastic Mixing in Idealized Convection-Permitting Simulations of Squall Lines [electronic resource]

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Author: Pacific Northwest National Laboratory (U.S.) (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2020.
Subjects:
Description
Abstract:This study investigates impacts of altering subgrid-scale mixing in ?convection-permitting? kilometer-scale horizontal-grid-spacing (?<sub>h</sub>) simulations by applying either constant or stochastic multiplicative factors to the horizontal mixing coefficients within the Weather Research and Forecasting Model. In quasi-idealized 1-km ?<sub>h</sub> simulations of two observationally based squall-line cases, constant enhanced mixing produces larger updraft cores that are more dilute at upper levels, weakens the cold pool, rear-inflow jet, and front-to-rear flow of the squall line, and degrades the model?s effective resolution. Reducing mixing by a constant multiplicative factor has the opposite effect on all metrics. Completely turning off parameterized horizontal mixing produces bulk updraft statistics and squall-line mesoscale structure closest to an LES ?benchmark? among all 1-km simulations, although the updraft cores are too undilute. The stochastic mixing scheme, which applies a multiplicative factor to the mixing coefficients that varies stochastically in time and space, is employed at 0.5-, 1-, and 2-km ?<sub>h</sub>. It generally reduces midlevel vertical velocities and enhances upper-level vertical velocities compared to simulations using the standard mixing scheme, with more substantial impacts at 1- and 2-km ?<sub>h</sub> compared to 0.5-km ?<sub>h</sub>. Further, the stochastic scheme also increases updraft dilution to better agree with the LES for one case, but has less impact on the other case. Stochastic mixing acts to weaken the cold pool but without a significant impact on squall-line propagation. It also does not affect the model?s overall effective resolution unlike applying constant multiplicative factors to the mixing coefficients.
Item Description:Published through Scitech Connect.
12/10/2020.
"PNNL-SA-156541."
"Journal ID: ISSN 0027-0644."
": US2205273."
Stanford, McKenna W. ; Morrison, Hugh ; Varble, Adam C. ;
National Center for Atmospheric Research (NCAR), Boulder, CO (United States)
Physical Description:Size: p. 4971-4994 : digital, PDF file.