Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means [electronic resource]

Saved in:
Bibliographic Details
Online Access: Full Text (via OSTI)
Corporate Authors: Lawrence Berkeley National Laboratory (Researcher), Lawrence Berkeley National Laboratory, E-Scholarship Repository, Berkeley, CA (United States)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. Office of Science ; Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2019.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b12830811
003 CoU
005 20220527040000.0
006 m o d f
007 cr |||||||||||
008 221019e20190620||| o| f0|||||eng|d
035 |a (TOE)ost1597715 
035 |a (TOE)1597715 
040 |a TOE  |c TOE 
049 |a GDWR 
072 1 |a 97  |2 edbsc 
086 0 |a E 1.99:1597715 
086 0 |a E 1.99:1597715 
245 0 0 |a Interactive volumetric segmentation for textile micro-tomography data using wavelets and nonlocal means  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy. Office of Science ;  |a Oak Ridge, Tenn. :  |b Distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2019. 
300 |a Size: p. 338-353 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through Scitech Connect. 
500 |a 06/20/2019. 
500 |a "Journal ID: ISSN 1932-1864." 
500 |a "Other: ark:/13030/qt1f4743gt." 
500 |a MacNeil, J. Michael L. ; Ushizima, Daniela M. ; Panerai, Francesco ; Mansour, Nagi N. ; Barnard, Harold S. ; Parkinson, Dilworth Y. ;  
500 |a Lawrence Berkeley National Laboratory, E-Scholarship Repository, Berkeley, CA (United States) 
520 3 |a This work addresses segmentation of volumetric images of woven carbon fiber textiles from micro-tomography data. We propose a semi-supervised algorithm to classify carbon fibers that requires sparse input as opposed to completely labeled images. The main contributions are: (a) design of effective discriminative classifiers, for three-dimensional textile samples, trained on wavelet features for segmentation; (b) coupling of previous step with nonlocal means as simple, efficient alternative to the Potts model; and (c) demonstration of reuse of classifier to diverse samples containing similar content. We evaluate our work by curating test sets of voxels in the absence of a complete ground truth mask. The algorithm obtains an average 0.95 F1 score on test sets and average F1 score of 0.93 on new samples. Finally, we conclude with discussion of failure cases and propose future directions toward analysis of spatiotemporal high-resolution micro-tomography images. 
536 |b AC02-05CH11231. 
536 |b AC02?05CH11231. 
650 7 |a 97 mathematics and computing  |2 local. 
650 7 |a 3d image processing  |2 local. 
650 7 |a 3d segmentation  |2 local. 
650 7 |a 3d woven carbon fiber  |2 local. 
650 7 |a Composites  |2 local. 
650 7 |a Machine learning  |2 local. 
650 7 |a Microct  |2 local. 
650 7 |a Neural networks  |2 local. 
650 7 |a Mathematics and computing  |2 local. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Science.  |4 spn. 
710 2 |a Lawrence Berkeley National Laboratory, E-Scholarship Repository, Berkeley, CA (United States).  |f res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information  |4 dst. 
856 4 0 |u https://www.osti.gov/servlets/purl/1597715  |z Full Text (via OSTI) 
907 |a .b128308114  |b 02-28-23  |c 12-08-22 
998 |a web  |b 12-08-22  |c f  |d m   |e p  |f eng  |g    |h 0  |i 1 
956 |a Information bridge 
999 f f |i eb62e397-5374-5848-b2d2-e878321cfeb4  |s 2ffccb41-6da7-5786-b09b-f575d1ae25bd 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:1597715  |h Superintendent of Documents classification  |i web  |n 1