Essential math for data science : take control of your data with fundamental linear algebra, probability, and statistics / Thomas Nield.

Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. A...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via EBSCO)
Main Author: Nield, Thomas (Computer programmer) (Author)
Format: eBook
Language:English
Published: Sebastopol, CA : O'Reilly Media, Inc., 2022.
Edition:First edition.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b12853514
006 m o d
007 cr |||||||||||
008 220529t20222022caua o 001 0 eng d
005 20240520201613.4
020 |a 9781098102906  |q electronic book 
020 |a 1098102908  |q electronic book 
020 |a 9781098102883  |q electronic book 
020 |a 1098102886  |q electronic book 
020 |z 9781098102937 
020 |z 1098102932 
035 |a (OCoLC)ebs1321899316 
035 |a (OCoLC)1321899316 
037 |a ebs3293931 
040 |a YDX  |b eng  |e rda  |c YDX  |d N$T  |d OCLCF  |d TEFOD  |d UKAHL  |d OCLCQ  |d YDX  |d FTB 
049 |a GWRE 
050 4 |a QA76.9.D343  |b N54 2022 
100 1 |a Nield, Thomas  |c (Computer programmer),  |e author.  |0 http://id.loc.gov/authorities/names/no2016138174. 
245 1 0 |a Essential math for data science :  |b take control of your data with fundamental linear algebra, probability, and statistics /  |c Thomas Nield. 
250 |a First edition. 
264 1 |a Sebastopol, CA :  |b O'Reilly Media, Inc.,  |c 2022. 
264 4 |c ©2022. 
300 |a 1 online resource (xiv, 332 pages) :  |b color illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Includes index. 
520 |a Master the math needed to excel in data science, machine learning, and statistics. In this book author Thomas Nield guides you through areas like calculus, probability, linear algebra, and statistics and how they apply to techniques like linear regression, logistic regression, and neural networks. Along the way you'll also gain practical insights into the state of data science and how to use those insights to maximize your career. Learn how to: Use Python code and libraries like SymPy, NumPy, and scikit-learn to explore essential mathematical concepts like calculus, linear algebra, statistics, and machine learning Understand techniques like linear regression, logistic regression, and neural networks in plain English, with minimal mathematical notation and jargon Perform descriptive statistics and hypothesis testing on a dataset to interpret p-values and statistical significance Manipulate vectors and matrices and perform matrix decomposition Integrate and build upon incremental knowledge of calculus, probability, statistics, and linear algebra, and apply it to regression models including neural networks Navigate practically through a data science career and avoid common pitfalls, assumptions, and biases while tuning your skill set to stand out in the job market. 
588 |a Description based on online resource; title from digital title page (viewed on April 14, 2023) 
650 0 |a Data mining  |x Mathematics. 
650 0 |a Mathematics.  |0 http://id.loc.gov/authorities/subjects/sh85082139. 
650 0 |a Machine learning  |x Mathematics. 
650 7 |a Data mining  |x Mathematics.  |2 fast  |0 (OCoLC)fst02013374. 
650 7 |a Mathematics.  |2 fast  |0 (OCoLC)fst01012163. 
776 0 8 |i Print version:  |z 1098102932  |z 9781098102937  |w (OCoLC)1308799337. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&site=ehost-live&AN=3293931  |z Full Text (via EBSCO) 
907 |a .b128535143  |b 06-13-23  |c 01-05-23 
907 |a .b128535143  |b 06-01-23  |c 01-05-23 
915 |a I 
944 |a MARS - RDA ENRICHED 
956 |a EBSCO ebook collection 
956 |b All EBSCO eBooks 
998 |a web  |b 05-31-23  |c b  |d b   |e -  |f eng  |g cau  |h 0  |i 1 
999 f f |i 1e89ad68-44a8-50c5-9330-3e47acadf49d  |s 83e0a6da-d857-5479-a01d-0200924927d4 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.D343 N54 2022  |h Library of Congress classification  |i web  |n 1