Text mining and visualization : case studies using open-source tools / edited by Markus Hofmann, Andrew Chisholm.

Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Taylor & Francis)
Other Authors: Hofmann, Markus (Computer scientist) (Editor), Chisholm, Andrew (Editor)
Format: eBook
Language:English
Published: Boca Raton : Chapman & Hall/CRC, 2016.
Edition:1st.
Series:Chapman & Hall/CRC data mining and knowledge discovery series.
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b12862765
003 CoU
005 20230113054233.0
006 m o d
007 cr |||||||||||
008 151207s2016 flua ob 001 0 eng d
020 |a 9781482237580  |q (PDF ebook) 
020 |a 148223758X  |q (PDF ebook) 
020 |z 9781482237573  |q (hbk.) 
035 |a (OCoLC)tfe988215764 
035 |a (OCoLC)988215764 
037 |a tfe9780429161971 
040 |a NLE  |b eng  |e rda  |e pn  |c NLE  |d OCLCO  |d OCLCF  |d OCLCO  |d NRC  |d CRCPR  |d UAB  |d OCLCQ  |d STF  |d OCLCO  |d U3W  |d OCLCQ  |d YDX  |d TYFRS  |d LEAUB  |d OCLCQ  |d UKAHL  |d UKMGB  |d ORMDA  |d OCLCO  |d OH1 
049 |a GWRE 
050 4 |a QA76.9.N38  |b T49 2016 ebook 
245 0 0 |a Text mining and visualization :  |b case studies using open-source tools /  |c edited by Markus Hofmann, Andrew Chisholm. 
250 |a 1st. 
264 1 |a Boca Raton :  |b Chapman & Hall/CRC,  |c 2016. 
264 4 |c ©2016. 
300 |a 1 online resource :  |b illustrations (black and white) 
336 |a text  |b txt  |2 rdacontent. 
336 |a still image  |b sti  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Chapman & Hall/CRC data mining and knowledge discovery series. 
505 0 |a Front Cover; Contents; I: RapidMiner; 1. RapidMiner for Text Analytic Fundamentals; 2. Empirical Zipf-Mandelbrot Variation for Sequential Windows within Documents; II: KNIME; 3. Introduction to the KNIME Text Processing Extension; 4. Social Media Analysis -- Text Mining Meets Network Mining; III: Python; 5. Mining Unstructured User Reviews with Python; 6. Sentiment Classification and Visualization of Product Review Data; 7. Mining Search Logs for Usage Patterns; 8. Temporally Aware Online News Mining and Visualization with Python; 9. Text Classification Using Python; IV: R. 
505 8 |a 10. Sentiment Analysis of Stock Market Behavior from Twitter Using the R Tool11. Topic Modeling; 12. Empirical Analysis of the Stack Overflow Tags Network; Back Cover. 
504 |a Includes bibliographical references and index. 
520 |a Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a w. 
588 0 |a CIP data; item not viewed. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946. 
700 1 |a Hofmann, Markus  |c (Computer scientist),  |e editor.  |0 http://id.loc.gov/authorities/names/n2013046101  |1 http://isni.org/isni/000000039709974X. 
700 1 |a Chisholm, Andrew,  |e editor. 
776 0 8 |i Print version:  |z 9781482237573. 
830 0 |a Chapman & Hall/CRC data mining and knowledge discovery series.  |0 http://id.loc.gov/authorities/names/no2007060486. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429161971  |z Full Text (via Taylor & Francis) 
907 |a .b128627657  |b 02-01-23  |c 01-20-23 
998 |a web  |b 01-31-23  |c b  |d b   |e -  |f eng  |g flu  |h 0  |i 1 
907 |a .b128627657  |b 01-31-23  |c 01-20-23 
944 |a MARS - RDA ENRICHED 
915 |a I 
956 |a Taylor & Francis Ebooks 
956 |b Taylor & Francis All eBooks 
999 f f |i c1c7c623-a385-563a-86e3-a9d9f7dd77df  |s 770f89a5-b69e-5285-a91f-459c84897840 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.N38 T49 2016 ebook  |h Library of Congress classification  |i web  |n 1