Text mining and visualization : case studies using open-source tools / edited by Markus Hofmann, Andrew Chisholm.
Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain...
Saved in:
Online Access: |
Full Text (via Taylor & Francis) |
---|---|
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Boca Raton :
Chapman & Hall/CRC,
2016.
|
Edition: | 1st. |
Series: | Chapman & Hall/CRC data mining and knowledge discovery series.
|
Subjects: |
MARC
LEADER | 00000cam a2200000xi 4500 | ||
---|---|---|---|
001 | b12862765 | ||
003 | CoU | ||
005 | 20230113054233.0 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 151207s2016 flua ob 001 0 eng d | ||
020 | |a 9781482237580 |q (PDF ebook) | ||
020 | |a 148223758X |q (PDF ebook) | ||
020 | |z 9781482237573 |q (hbk.) | ||
035 | |a (OCoLC)tfe988215764 | ||
035 | |a (OCoLC)988215764 | ||
037 | |a tfe9780429161971 | ||
040 | |a NLE |b eng |e rda |e pn |c NLE |d OCLCO |d OCLCF |d OCLCO |d NRC |d CRCPR |d UAB |d OCLCQ |d STF |d OCLCO |d U3W |d OCLCQ |d YDX |d TYFRS |d LEAUB |d OCLCQ |d UKAHL |d UKMGB |d ORMDA |d OCLCO |d OH1 | ||
049 | |a GWRE | ||
050 | 4 | |a QA76.9.N38 |b T49 2016 ebook | |
245 | 0 | 0 | |a Text mining and visualization : |b case studies using open-source tools / |c edited by Markus Hofmann, Andrew Chisholm. |
250 | |a 1st. | ||
264 | 1 | |a Boca Raton : |b Chapman & Hall/CRC, |c 2016. | |
264 | 4 | |c ©2016. | |
300 | |a 1 online resource : |b illustrations (black and white) | ||
336 | |a text |b txt |2 rdacontent. | ||
336 | |a still image |b sti |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
490 | 1 | |a Chapman & Hall/CRC data mining and knowledge discovery series. | |
505 | 0 | |a Front Cover; Contents; I: RapidMiner; 1. RapidMiner for Text Analytic Fundamentals; 2. Empirical Zipf-Mandelbrot Variation for Sequential Windows within Documents; II: KNIME; 3. Introduction to the KNIME Text Processing Extension; 4. Social Media Analysis -- Text Mining Meets Network Mining; III: Python; 5. Mining Unstructured User Reviews with Python; 6. Sentiment Classification and Visualization of Product Review Data; 7. Mining Search Logs for Usage Patterns; 8. Temporally Aware Online News Mining and Visualization with Python; 9. Text Classification Using Python; IV: R. | |
505 | 8 | |a 10. Sentiment Analysis of Stock Market Behavior from Twitter Using the R Tool11. Topic Modeling; 12. Empirical Analysis of the Stack Overflow Tags Network; Back Cover. | |
504 | |a Includes bibliographical references and index. | ||
520 | |a Text Mining and Visualization: Case Studies Using Open-Source Tools provides an introduction to text mining using some of the most popular and powerful open-source tools: KNIME, RapidMiner, Weka, R, and Python. The contributors-all highly experienced with text mining and open-source software-explain how text data are gathered and processed from a w. | ||
588 | 0 | |a CIP data; item not viewed. | |
650 | 0 | |a Data mining. |0 http://id.loc.gov/authorities/subjects/sh97002073. | |
650 | 7 | |a Data mining. |2 fast |0 (OCoLC)fst00887946. | |
700 | 1 | |a Hofmann, Markus |c (Computer scientist), |e editor. |0 http://id.loc.gov/authorities/names/n2013046101 |1 http://isni.org/isni/000000039709974X. | |
700 | 1 | |a Chisholm, Andrew, |e editor. | |
776 | 0 | 8 | |i Print version: |z 9781482237573. |
830 | 0 | |a Chapman & Hall/CRC data mining and knowledge discovery series. |0 http://id.loc.gov/authorities/names/no2007060486. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=https://www.taylorfrancis.com/books/9780429161971 |z Full Text (via Taylor & Francis) |
907 | |a .b128627657 |b 02-01-23 |c 01-20-23 | ||
998 | |a web |b 01-31-23 |c b |d b |e - |f eng |g flu |h 0 |i 1 | ||
907 | |a .b128627657 |b 01-31-23 |c 01-20-23 | ||
944 | |a MARS - RDA ENRICHED | ||
915 | |a I | ||
956 | |a Taylor & Francis Ebooks | ||
956 | |b Taylor & Francis All eBooks | ||
999 | f | f | |i c1c7c623-a385-563a-86e3-a9d9f7dd77df |s 770f89a5-b69e-5285-a91f-459c84897840 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA76.9.N38 T49 2016 ebook |h Library of Congress classification |i web |n 1 |