Statistical learning from a regression perspective / Richard A. Berk.

Saved in:
Bibliographic Details
Main Author: Berk, Richard A.
Format: Book
Language:English
Published: New York, NY : Springer Verlag, ©2008.
Series:Springer series in statistics.
Subjects:

MARC

LEADER 00000cam a2200000 a 4500
001 b4975280
003 CoU
008 080409s2008 nyua b 001 0 eng d
005 20230818004352.3
010 |a 2008926886 
020 |a 9780387775005 
020 |a 0387775005 
035 |a (OCoLC)ocn213855653 
035 |a (OCoLC)213855653 
040 |a BTCTA  |c BTCTA  |d DLC  |d BAKER  |d YDXCP  |d OHX  |d BWX  |d CDX  |d IXA  |d ORU  |d OrLoB-B 
042 |a lccopycat 
049 |a CODA 
050 0 0 |a QA278.2  |b .B463 2008 
100 1 |a Berk, Richard A.  |0 http://id.loc.gov/authorities/names/n79056124  |1 http://isni.org/isni/0000000116503874. 
245 1 0 |a Statistical learning from a regression perspective /  |c Richard A. Berk. 
260 |a New York, NY :  |b Springer Verlag,  |c ©2008. 
300 |a xvii, 358 pages :  |b illustrations ;  |c 25 cm. 
336 |a text  |b txt  |2 rdacontent. 
337 |a unmediated  |b n  |2 rdamedia. 
338 |a volume  |b nc  |2 rdacarrier. 
490 1 |a Springer series in statistics. 
504 |a Includes bibliographical references (pages [343]-353) and index. 
520 1 |a "Statistical Learning from a Regression Perspective considers statistical learning applications when interest centers on the conditional distribution of the response variable, given a set of predictors, and when it is important to characterize how the predictors are related to the response. As a first approximation, this is can be seen as an extension of nonparametric regression. Among the statistical learning procedures examined are bagging, random forests, boosting, and support vector machines. Response variables may be quantitative or categorical." "Real applications are emphasized, especially those with practical implications. One important theme is the need to explicitly take into account asymmetric costs in the fitting process. For example, in some situations false positives may be far less costly than false negatives. Another important theme is to not automatically cede modeling decisions to a fitting algorithm. In many settings, subject-matter knowledge should trump formal fitting criteria. Yet another important theme is to appreciate the limitation of one's data and not apply statistical learning procedures that require more than the data can provide." "The material is written for graduate students in the social and life sciences and for researchers who want to apply statistical learning procedures to scientific and policy problems."--BOOK JACKET. 
650 0 |a Regression analysis.  |0 http://id.loc.gov/authorities/subjects/sh85112392. 
830 0 |a Springer series in statistics.  |0 http://id.loc.gov/authorities/names/n42023188. 
907 |a .b49752807  |b 03-20-20  |c 09-25-08 
998 |a eng  |b 11-18-08  |c a  |d m   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b49752807  |b 11-26-14  |c 09-25-08 
944 |a MARS - RDA ENRICHED 
907 |a .b49752807  |b 06-04-11  |c 09-25-08 
907 |a .b49752807  |b 12-31-08  |c 09-25-08 
907 |a .b49752807  |b 11-18-08  |c 09-25-08 
946 |a cnh 
999 f f |i 2077c2eb-c060-5ab6-84f2-310ae049ccf9  |s 012cd962-4ba0-56ee-acda-aa68a02d10bb 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Engineering Math & Physics  |d Closed Stacks - Engineering Math & Physics Library - Stacks  |e QA278.2 .B463 2008  |h Library of Congress classification  |i book  |m U183048025816  |n 1