The geometry of Jordan and Lie structures / Wolfgang Bertram.

The geometry of Jordan and Lie structures tries to answer the following question: what is the integrated, or geometric, version of real Jordan algebras, - triple systems and - pairs? Lie theory shows the way one has to go: Lie groups and symmetric spaces are the geometric version of Lie algebras and...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Bertram, Wolfgang, 1965-
Format: eBook
Language:English
Published: Berlin ; New York : Springer, ©2000.
Series:Lecture notes in mathematics (Springer-Verlag) ; 1754.
Subjects:

MARC

LEADER 00000cam a22000004a 4500
001 b5498309
006 m o d
007 cr |||||||||||
008 001114s2000 gw ob 001 0 eng c
005 20240418142219.0
019 |a 225572311  |a 729898579  |a 771199204  |a 935291012 
020 |a 9783540444589  |q (electronic bk.) 
020 |a 3540444580  |q (electronic bk.) 
020 |z 3540414266 
020 |z 9783540414261 
035 |a (OCoLC)spr50031549 
035 |a (OCoLC)50031549  |z (OCoLC)225572311  |z (OCoLC)729898579  |z (OCoLC)771199204  |z (OCoLC)935291012 
037 |a spr10.1007/b76884 
040 |a COO  |b eng  |e pn  |c COO  |d EYM  |d SPLNM  |d GW5XE  |d OCLCQ  |d YNG  |d DKDLA  |d OCLCO  |d OCLCQ  |d GW5XE  |d OCLCF  |d OCLCQ  |d AU@  |d AZU  |d CSU  |d UA@  |d OCLCQ  |d EBLCP  |d YDX 
042 |a pcc 
049 |a GWRE 
050 4 |a QA3  |b .L28 no. 1754  |a QA252.5 
088 |a V1043227 
100 1 |a Bertram, Wolfgang,  |d 1965- 
245 1 4 |a The geometry of Jordan and Lie structures /  |c Wolfgang Bertram. 
260 |a Berlin ;  |a New York :  |b Springer,  |c ©2000. 
300 |a 1 online resource (xvi, 265 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Lecture notes in mathematics,  |x 0075-8434 ;  |v 1754. 
504 |a Includes bibliographical references (pages 256-262) and indexes. 
505 0 0 |g Jordan-lie functor --  |t Symmetric spaces and the lie-functor --  |t Prehomogeneous symmetric spaces and jordan algebras --  |t Jordan-lie functor --  |t Classical spaces --  |t Non-degenerate spaces --  |t Conformal group and global theory --  |t Integration of Jordan structures --  |t Conformal lie algebra --  |t Conformal group and conformal completion --  |t Liouville theorem and fundamental theorem --  |t Algebraic structures of symmetric spaces with twist --  |t Spaces of the first and of the second kind. 
520 |a The geometry of Jordan and Lie structures tries to answer the following question: what is the integrated, or geometric, version of real Jordan algebras, - triple systems and - pairs? Lie theory shows the way one has to go: Lie groups and symmetric spaces are the geometric version of Lie algebras and Lie triple systems. It turns out that both geometries are closely related via a functor between them, called the Jordan-Lie functor, which is constructed in this book. The reader is not assumed to have any knowledge of Jordan theory; the text can serve as a self-contained introduction to (real finite-dimensional) Jordan theory. 
650 0 |a Jordan algebras. 
650 0 |a Lie algebras. 
650 7 |a Jordan algebras.  |2 fast  |0 (OCoLC)fst00983985. 
650 7 |a Lie algebras.  |2 fast  |0 (OCoLC)fst00998125. 
776 0 8 |i Print version:  |a Bertram, Wolfgang, 1965-  |t Geometry of Jordan and Lie structures.  |d Berlin ; New York : Springer, ©2000  |z 3540414266  |w (DLC) 00066150  |w (OCoLC)45392825. 
830 0 |a Lecture notes in mathematics (Springer-Verlag) ;  |v 1754. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/b76884  |z Full Text (via Springer) 
907 |a .b54983095  |b 08-29-20  |c 06-19-09 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 4  |i 1 
907 |a .b54983095  |b 05-09-17  |c 06-19-09 
915 |a 4 
956 |a Springer e-books 
956 |b Springer Nature - Springer Book Archive - Springer Mathematics 
956 |a Mathematics 
956 |a Springer e-books: Archive 
999 f f |i 2f221ed4-1823-5ac2-bc78-2974412d63f2  |s e1a32307-9cec-5cb0-8956-e757b1c5d52a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA3 .L28 no. 1754 QA252.5  |h Library of Congress classification  |i Ebooks, Prospector  |n 1