|
|
|
|
LEADER |
00000nam a22000003u 4500 |
001 |
b5619093 |
003 |
CoU |
005 |
20160620220236.7 |
006 |
m o d f |
007 |
cr ||||||||||| |
008 |
160906e19990412||| o| f1|||||eng|d |
035 |
|
|
|a (TOE)ost9211
|
035 |
|
|
|a (TOE)9211
|
040 |
|
|
|a TOE
|c TOE
|
049 |
|
|
|a GDWR
|
072 |
|
7 |
|a 33
|2 edbsc
|
086 |
0 |
|
|a E 1.99:ornl/cp-103223
|
086 |
0 |
|
|a E 1.99:ornl/cp-103223
|
088 |
|
|
|a ornl/cp-103223
|
245 |
0 |
0 |
|a Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions
|h [electronic resource]
|
260 |
|
|
|a Washington, D.C. :
|b United States. Department of Energy. Office of Conservation and Renewable Energy. Office of Industrial Technologies ;
|a Oak Ridge, Tenn. :
|b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,
|c 1999.
|
300 |
|
|
|a 15 pages :
|b digital, PDF file.
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a computer
|b c
|2 rdamedia.
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier.
|
500 |
|
|
|a Published through SciTech Connect.
|
500 |
|
|
|a 04/12/1999.
|
500 |
|
|
|a "ornl/cp-103223"
|
500 |
|
|
|a "ED 20 01 00 0"
|
500 |
|
|
|a "DE00009211"
|
500 |
|
|
|a International Conference on metallurgical Coagings and Thin Films, ICMCTF-99, San Diego, CA, Apr. 12-16, 1999.
|
500 |
|
|
|a Leyens, C; Schulz, U; Pint, B A; Wright, I G.
|
520 |
3 |
|
|a The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y<sub>2</sub>O<sub>3</sub>-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 1150°C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.
|
536 |
|
|
|b AC05-96OR22464.
|
650 |
|
7 |
|a Energy Beam Deposition.
|2 local.
|
650 |
|
7 |
|a Physical Vapor Deposition.
|2 local.
|
650 |
|
7 |
|a Thermal Barriers.
|2 local.
|
650 |
|
7 |
|a Microstructure.
|2 local.
|
650 |
|
7 |
|a Performance.
|2 local.
|
650 |
|
7 |
|a Oxidation.
|2 local.
|
650 |
|
7 |
|a Advanced Propulsion Systems.
|2 edbsc.
|
710 |
2 |
|
|a Oak Ridge National Laboratory.
|4 res.
|
710 |
1 |
|
|a United States.
|b Department of Energy.
|b Office of Conservation and Renewable Energy.
|b Office of Industrial Technologies.
|4 spn.
|
710 |
1 |
|
|a United States.
|b Department of Energy.
|b Office of Scientific and Technical Information.
|4 dst.
|
856 |
4 |
0 |
|u http://www.osti.gov/scitech/biblio/9211
|z Online Access
|
907 |
|
|
|a .b56190931
|b 03-06-23
|c 12-15-09
|
998 |
|
|
|a web
|b 09-09-16
|c f
|d m
|e p
|f eng
|g
|h 0
|i 3
|
956 |
|
|
|a Information bridge
|
999 |
f |
f |
|i f4cc899d-99d2-5cb8-8f2c-18cb1ca8d588
|s dcfd01ef-1cb5-50bf-b4c3-65dd2d6549bf
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e E 1.99:ornl/cp-103223
|h Superintendent of Documents classification
|i web
|n 1
|