Numerical simulations of annular wire-array z-pinches in (x,y), (r,θ), and (r,z) geometries [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Sandia National Laboratories (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1997.
Subjects:
Description
Abstract:The Total Immersion PIC (TIP) code has been used in several two-dimensional geometries to understand better the measured dynamics of annular, aluminum wire-array z-pinches. The areas investigated include the formation of the plasma sheath from current-induced individual wire explosions, the effects of wire number and symmetry on the implosion dynamics, and the dependence of the Rayleigh-Taylor instability growth on initial sheath thickness. A qualitative change in the dynamics with increasing wire number was observed, corresponding to a transition between a z-pinch composed of non-merging, self-pinching individual wires, and one characterized by the rapid formation and subsequent implosion of a continuous plasma sheath. A sharp increase in radiated power with increasing wire number has been observed experimentally near this calculated transition. Although two-dimensional codes have correctly simulated observed power pulse durations, there are indications that three dimensional effects are important in understanding the actual mechanism by which these pulse lengths are produced.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
12/01/1997.
"sand--97-2725"
"DE98002601"
"DP0102012"
Marder, B.M.; Sanford, T.W.L.; Allshouse, G.O.
Physical Description:25 p. : digital, PDF file.