Coordinates of the quantum plane as q-tensor operators in U{sub q} (su(2) * su(2)) [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: United States. Department of Energy. Oakland Operations Office (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1995.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b5657748
003 CoU
005 20091103233325.0
006 m d f
007 cr un
008 091215e19950113dcu st f0|||||eng|d
035 |a (TOE)ost28358 
035 |a (TOE)28358 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 66  |2 edbsc 
086 0 |a E 1.99:DOE/ER/40757--058 
086 0 |a E 1.99:DOE/ER/40757--058 
088 |a DOE/ER/40757--058 
088 |a DE95007100 
088 |a CPP-94-35 
245 0 0 |a Coordinates of the quantum plane as q-tensor operators in U{sub q} (su(2) * su(2))  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Dept. of Energy ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,   |c 1995. 
300 |a 18 p. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 01/13/1995. 
500 |a "DOE/ER/40757--058" 
500 |a "DE95007100" 
500 |a "CPP-94-35" 
500 |a Biedenharn, L.C.; Lohe, M.A. 
500 |a Texas Univ., Austin, TX (United States) 
520 3 |a The relation between the set of transformations M{sub q}(2) of the quantum plane and the quantum universal enveloping algebra U{sub q}(u(2)) is investigated by constructing representations of the factor algebra U{sub q} (u(2) * u(2)). The non-commuting coordinates of M{sub q}(2), on which U{sub q}(2) * U{sub q}(2) acts, are realized as q-spinors with respect to each U{sub q}(u(2)) algebra. The representation matrices of U{sub q}(2) are constructed as polynomials in these spinor components. This construction allows a derivation of the commutation relations of the noncommuting coordinates of M{sub q}(2) directly from properties of U{sub q}(u(2)). The generalization of these results to U{sub q}(u(n)) and M{sub q}(n) is also discussed. 
536 |b FG03-93ER40757. 
650 7 |a Lie Groups.  |2 local. 
650 7 |a Quantization.  |2 local. 
650 7 |a Geometry.  |2 local. 
650 7 |a Commutation Relations.  |2 local. 
650 7 |a Irreducible Representations.  |2 local. 
650 7 |a Group Theory.  |2 local. 
650 7 |a Transformations.  |2 local. 
650 7 |a Angular Momentum.  |2 local. 
650 7 |a Quantum Operators.  |2 local. 
650 7 |a Boson Expansion.  |2 local. 
650 7 |a Coordinates.  |2 local. 
650 7 |a Physics.  |2 edbsc. 
710 2 |a United States.  |b Department of Energy.  |4 spn. 
710 2 |a United States.  |b Department of Energy.  |b Oakland Operations Office.  |4 res. 
710 2 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/28358-ap7eIC/webviewable/  |z Online Access 
907 |a .b56577485  |b 03-06-23  |c 12-20-09 
998 |a web  |b 12-20-09  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i eca7aa0f-eda5-57a2-9f59-4dadb8fd5baa  |s bfe95243-ccc7-5864-898a-e63a9c8f38d9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:DOE/ER/40757--058  |h Superintendent of Documents classification  |i web  |n 1