Mercury separation from aqueous wastes [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Oak Ridge National Laboratory. (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1995.
Subjects:
Description
Abstract:This project is providing an assessment of new sorbents for removing mercury from wastes at US Department of Energy sites. Four aqueous wastes were chosen for lab-scale testing; a high-salt, acidic waste currently stored at Idaho National Engineering Laboratory (INEL); a high-salt, alkaline waste stored at the Savannah River Site (SRS); a dilute lithium hydroxide solution stored at the Oak Ridge Y-12 Plant; and a low-salt, neutral groundwater generated at the Y-12 Plant. Eight adsorbents have been identified for testing, covering a wide range of cost and capability. Screening tests have been completed, which identified the most promising adsorbents for each waste stream. Batch isotherm tests have been completed using the most promising adsorbents, and column tests are in progress. Because of the wide range of waste compositions tested, no one adsorbent is effective in all of these waste streams. Based on loading capacity and compatibility with the waste solutions. the most effective adsorbents identified to date are SuperLig 618 for the INEL tank waste stimulant; Mersorb followed by lonac SR-3 for the SRS tank waste stimulant; Durasil 70 and Ionac SR-3) for the LIOH solution; and lonac SR-3 followed by lonac SR-4 and Mersorb for the Y-12 groundwater.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
07/01/1995.
"CONF-9507119--9"
"DE96003778"
Summer national meeting of the American Institute of Chemical Engineers, Boston, MA (United States), 30 Jul - 2 Aug 1995.
Taylor, P.A.; Klasson, K.T.; Corder, S.L.
Physical Description:16 p.