Hydrodynamic instabilities in inertial confinement fusion [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Los Alamos National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1994.
Subjects:
Description
Abstract:The focus of the paper is on buoyancy-driven instabilities of the Rayleigh-Taylor type, which are commonly regarded as the most important kind of hydrodynamic instability in inertial-confinement-fusion implosions. The paper is intended to be pedagogical rather than research-oriented, and so is by no means a comprehensive review of work in this field. Rather, it is hoped that the student will find here a foundation on which to build an understanding of current research, and the experienced researcher will find a compilation of useful results. The aim of the paper is to discuss the evolution of a single Rayleigh-Taylor-unstable mode, from its linear phase to its late-stage constant-velocity bubble growth, with a brief consideration of the saturation of linear growth. The influence of other modes in invoked only in the short-range sense (in wavenumber space) of the Haan saturation model. Owing to limitations of space, the treatment of other instabilities such as Richtmyer-Meshkov and Kelvin-Helmholtz is necessarily very brief, and entirely inadequate as an introductory discussion. Likewise, there is no reference to the effect of convergent geometry, to long-range mode coupling, or to shape effects in three-dimensional growth. Furthermore, there is no reference to the large body of experimental research related to hydrodynamic instabilities.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
12/01/1994.
"la-ur--94-3945"
" conf-9408127--5"
"DE95003663"
45. Scottish Universities summer school in physics,Fife (United Kingdom),7-20 Aug 1994.
Hoffman, N.M.
Physical Description:36 p. : digital, PDF file.