Asymptotic analysis, Working Note No. 1 [electronic resource] : Basic concepts and definitions.

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Argonne National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 1993.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b5956930
003 CoU
006 m o d f
007 cr |||||||||||
008 141106e19930701||| ot f0|||||eng|d
035 |a (TOE)ost10185425 
035 |a (TOE)10185425 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99:anl/mcs-tm--179 
086 0 |a E 1.99:anl/mcs-tm--179 
088 |a anl/mcs-tm--179 
245 0 0 |a Asymptotic analysis, Working Note No. 1  |h [electronic resource] :  |b Basic concepts and definitions. 
260 |a Washington, D.C. :  |b United States. Department of Energy. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1993. 
300 |a 16 p. :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 07/01/1993. 
500 |a "anl/mcs-tm--179" 
500 |a "DE94001000" 
500 |a Kaper, H.G.; Garbey, M. 
513 |a Topical;  |b 07/01/1993 - 07/01/1993. 
520 3 |a In this note we introduce the basic concepts of asymptotic analysis. After some comments of historical interest we begin by defining the order relations O, o, and O{sup {number_sign}}, which enable us to compare the asymptotic behavior of functions of a small positive parameter ε as ε ↓ 0. Next, we introduce order functions, asymptotic sequences of order functions and more general gauge sets of order functions and define the concepts of an asymptotic approximation and an asymptotic expansion with respect to a given gauge set. This string of definitions culminates in the introduction of the concept of a regular asymptotic expansion, also known as a Poincare expansion, of a function f : (0, ε{sub o}) → X, where X is a normed vector space of functions defined on a domain D ε R{sup N}. We conclude the note with the asymptotic analysis of an initial value problem whose solution is obtained in the form of a regular asymptotic expansion. 
536 |b W-31109-ENG-38. 
650 7 |a Asymptotic Solutions.  |2 local. 
650 7 |a Functions.  |2 local. 
650 7 |a Boundary Conditions.  |2 local. 
650 7 |a Historical Aspects.  |2 local. 
650 7 |a Series Expansion.  |2 local. 
650 7 |a General And Miscellaneous//Mathematics, Computing, And Information Science.  |2 edbsc. 
710 2 |a Argonne National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/10185425/  |z Online Access 
907 |a .b5956930x  |b 03-06-23  |c 05-25-10 
998 |a web  |b 05-25-10  |c f  |d m   |e p  |f eng  |g    |h 0  |i 2 
956 |a Information bridge 
999 f f |i 8f5f7dc9-3af2-5a39-b4b3-c2d59468f471  |s 8a8c9e08-d616-551e-91f3-781c08b7f845 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:anl/mcs-tm--179  |h Superintendent of Documents classification  |i web  |n 1