Asymptotics of a free boundary problem [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Argonne National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 1992.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b5962717
003 CoU
005 20080212000000.0
006 m d f
007 cr un
008 100524e19921005dcu st f0|||||eng|d
035 |a (TOE)ost10172528 
035 |a (TOE)10172528 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99:anl/mcs/pp--77652 
086 0 |a E 1.99:anl/mcs/pp--77652 
245 0 0 |a Asymptotics of a free boundary problem  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Dept. of Energy ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 1992. 
300 |a 11 p. :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 10/05/1992. 
500 |a "anl/mcs/pp--77652" 
500 |a "DE94016341" 
500 |a Kaper, H.G.; Kwong, Man Kam; Atkinson, F.V. 
513 |a Topical;  |b 10/01/1992. 
520 3 |a This article is concerned with free boundary problems for the differential equations u″ + (2ν + 1)/r u′ + u - u{sup q} = 0, r > 0, where 0 ≤ q < 1 and ν ≥ 0. As was shown by Kaper and Kwong, there exists a unique R > 0, such that the equation admits a classical solution u that is positive and monotone on (0,R) and that satisfies the boundary conditions u′(0) = 0, u(R) = u′(R) = 0. This article is concerned with the behavior of R and u(0) as q → 1. 
536 |b W-31109-ENG-38. 
650 7 |a Mathematics.  |2 local. 
650 7 |a Differential Equations.  |2 local. 
650 7 |a Boundary Conditions.  |2 local. 
650 7 |a Analytical Solution.  |2 local. 
650 7 |a Asymptotic Solutions.  |2 local. 
650 7 |a General And Miscellaneous//mathematics, Computing, And Information Science.  |2 edbsc. 
710 2 |a Argonne National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/10172528-fJXIjS/native/  |z Online Access 
907 |a .b59627177  |b 03-06-23  |c 05-26-10 
998 |a web  |b 05-26-10  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i ed09f413-c550-5400-b9de-7e6815a22324  |s c7f22882-bd1f-583e-9597-81936f1f2817 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:anl/mcs/pp--77652  |h Superintendent of Documents classification  |i web  |n 1