Induced cycle structures of the hyperoctahedral group [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Los Alamos National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 1992.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b5971833
003 CoU
005 20151202225509.9
006 m o d f
007 cr |||||||||||
008 160906e19920601||| o| f1|||||eng|d
035 |a (TOE)ost5653979 
035 |a (TOE)5653979 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99: conf-920662--1 
086 0 |a E 1.99:la-ur-92-266 
086 0 |a E 1.99: conf-920662--1 
088 |a conf-920662--1 
088 |a la-ur-92-266 
245 0 0 |a Induced cycle structures of the hyperoctahedral group  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Department of Energy ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1992. 
300 |a Pages: (16 p) :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 06/01/1992. 
500 |a "la-ur-92-266" 
500 |a " conf-920662--1" 
500 |a "DE92007570" 
500 |a 4. conference on formal power series and algebraic combinatorics, Montreal (Canada), 15-19 Jun 1992. 
500 |a Chen, W.Y.C. 
520 3 |a The hyperoctahedral group B{sub n} is treated as the automorphism group of the n-dimensional hypercube, denoted Q{sub n}, which is nowadays understood to be a graph on 2ⁿ vertices. It is well-known that B{sub n} can be represented by the group of signed permutations. In other words, any signed permutation induces a permutation on the vertices of Q{sub n} which preserves adjacencies. Moreover, signed permutations also a permutation group on the edge of Q{sub n}, denoted H{sub n}. We study the cycle structures of both B{sub n} and H{sub n}. The technique proposed here is to determine the induced cycle structure of a signed permutation by the number of fixed vertices or fixed edges of a signed permutation in the cyclic group generated by a signed permutation of given type. Here we directly define the type of a signed permutation by a double partition based on its signed cycle decomposition. In this way, we obtain explicit formulas for the number of induced cycles on vertices as well as edges of Q{sub n} of a signed permutation in terms of its type. By further exploring the connection between cycle indices and the structure of fixed points, we obtain the cycle indices of both B{sub n} and H{sub n}. Our formula for the cycle index of B{sub n}is much more natural and considerably simpler than that of Harrison and High. Meanwhile, the cycle structure of H{sub n} seems to have been untouched before, although it is well motivated by nonisomorphic edge colorings of Q{sub n} as well as by the recent interest in symmetries of computer networks. 
536 |b W-7405-ENG-36. 
650 7 |a Symmetry Groups.  |2 local. 
650 7 |a Computer Networks.  |2 local. 
650 7 |a Polynomials.  |2 local. 
650 7 |a Power Series.  |2 local. 
650 7 |a Functions.  |2 local. 
650 7 |a Series Expansion.  |2 local. 
650 7 |a General And Miscellaneous//Mathematics, Computing, And Information Science.  |2 edbsc. 
710 2 |a Los Alamos National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/5653979  |z Online Access 
907 |a .b5971833x  |b 03-06-23  |c 05-26-10 
998 |a web  |b 09-09-16  |c f  |d m   |e p  |f eng  |g    |h 0  |i 3 
956 |a Information bridge 
999 f f |i 5276d844-db35-58af-bf0b-54035d581bf3  |s d64f6c3d-4e3e-5f65-ad9f-140330f6b153 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: conf-920662--1  |h Superintendent of Documents classification  |i web  |n 1