Multigrid semi-implicit hydrodynamics revisited [electronic resource]
Saved in:
Online Access: |
Online Access |
---|---|
Corporate Author: | |
Format: | Government Document Electronic eBook |
Language: | English |
Published: |
Los Alamos, N.M. : Oak Ridge, Tenn. :
Los Alamos National Laboratory ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,
1983.
|
Subjects: |
Abstract: | The multigrid method has for several years been very successful for simple equations like Laplace's equation on a rectangle. For more complicated situations, however, success has been more elusive. Indeeed, there are only a few applications in which the multigrid method is now being successfully used in complicated production codes. The one with which we are most familiar is the application by Alcouffe to TTDAMG. We are more familiar with this second application in which, for a set of test problems, TTDAMG ran seven to twenty times less expensively (on a CRAY-1 computer) than its best competitor. This impressive performance, in a field where a factor of two improvement is considered significant, encourages one to attempt the application of the multigrid method in other complicated situations. The application discussed in this paper was actually attempted several years ago. In that paper the multigrid method was applied to the pressure iteration in three Eulerian and Lagrangian codes. The application to the Eulerian codes, both incompressible and compressible, was successful, but the application to the Lagrangian code was less so. The reason given for this lack of success was that the differencing for the pressure equation in the Lagrangian code, SALE, was bad. In this paper, we examine again the application of multigrad to the pressure equation in SALE with the goal of succeeding this time without cheating. |
---|---|
Item Description: | Published through SciTech Connect. 01/01/1983. "la-ur-83-1362" " conf-830581-1" "DE83012675" Conference on large scale scientific computation, Madison, WI, USA, 16 May 1983. Dendy, J.E. |
Physical Description: | Pages: 22 : digital, PDF file. |