MARC

LEADER 00000nam a22000003u 4500
001 b6018870
003 CoU
005 20151127224008.4
006 m o d f
007 cr |||||||||||
008 160906e19820101||| o| f1|||||eng|d
035 |a (TOE)ost5258227 
035 |a (TOE)5258227 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 70  |2 edbsc 
086 0 |a E 1.99: conf-820429-7 
086 0 |a E 1.99:la-ur-82-1045 
086 0 |a E 1.99: conf-820429-7 
088 |a conf-820429-7 
088 |a la-ur-82-1045 
245 0 0 |a Solution of the Fokker-Planck equation for charged particle transport in one space dimension  |h [electronic resource] 
260 |a Los Alamos, N.M. :  |b Los Alamos National Laboratory ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1982. 
300 |a Pages: 29 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 01/01/1982. 
500 |a "la-ur-82-1045" 
500 |a " conf-820429-7" 
500 |a "DE82014047" 
500 |a Los Alamos/CEA conference, Paris, France, 19 Apr 1982. 
500 |a Oliphant, T.A.; Andrade, A. 
520 3 |a In the study of charged particle transport in plasmas, numerical techniques for solving the Fokker-Planck equation have been developed which closely parallel those used in neutron transport. This was a natural step since the theory and methods of neutron transport have been well developed. Moreover a line of treatment has been developed tailored to the specific requirements of transport in mirror machines. This approach involves the assumption that the distribution function remain constant along a guiding center orbit. Diffusion techniques have been developed in which sequential moments of the transport equation are taken so as to generate a set of coupled equations. Here a method is developed which treats the transport operator according to the standard diamond differencing techniques of neutron transport, but treats the collision term by a method designed to take advantage of the form of the Fokker-Planck collision operator. This latter method makes use of matrix factorization techniques. In the absence of applied external fields, this method conserves particles rigorously. Deterministic methods run into difficulty in the treatment of magnetized plasmas in cases in which the guiding-center approximation does not apply. Thus, there are some situations in which one is driven to Monte Carlo techniques which are not a subject of this paper. 
536 |b W-7405-ENG-36. 
650 7 |a Fokker-Planck Equation.  |2 local. 
650 7 |a Analytical Solution.  |2 local. 
650 7 |a Plasma.  |2 local. 
650 7 |a Charged-Particle Transport.  |2 local. 
650 7 |a Distribution Functions.  |2 local. 
650 7 |a Magnetic Mirror Configurations.  |2 local. 
650 7 |a Neutron Transport Theory.  |2 local. 
650 7 |a Differential Equations.  |2 local. 
650 7 |a Equations.  |2 local. 
650 7 |a Functions.  |2 local. 
650 7 |a Magnetic Field Configurations.  |2 local. 
650 7 |a Open Configurations.  |2 local. 
650 7 |a Partial Differential Equations.  |2 local. 
650 7 |a Radiation Transport.  |2 local. 
650 7 |a Transport Theory.  |2 local. 
650 7 |a Plasma Physics And Fusion Technology.  |2 edbsc. 
710 2 |a Los Alamos National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/5258227  |z Online Access 
907 |a .b60188704  |b 03-06-23  |c 05-30-10 
998 |a web  |b 09-09-16  |c f  |d m   |e p  |f eng  |g    |h 0  |i 3 
956 |a Information bridge 
999 f f |i b8abe5d9-5dda-556d-990a-0e1d93abf2ff  |s 09734461-8633-53df-87eb-a0708e238c13 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: conf-820429-7  |h Superintendent of Documents classification  |i web  |n 1