Bayesian Modeling of Measurement Error in Predictor Variables Using Item Response Theory. Research Report [electronic resource] / Jean-Paul Fox and Cees A. W. Glas.

This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Fox, Jean-Paul
Corporate Author: Technische Hogeschool Twente. Faculty of Educational Science and Technology
Other Authors: Glas, Cees A. W.
Format: Electronic eBook
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 2000.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6109894
003 CoU
005 20080220161225.8
006 m d f
007 cr un
008 000101s2000 xx |||| ot ||| | eng d
035 |a (ERIC)ed450128 
040 |a ericd  |c ericd  |d MvI 
088 |a RR-00-03 
099 |f ERIC DOC #  |a ED450128 
100 1 |a Fox, Jean-Paul.  |0 http://id.loc.gov/authorities/names/no2009096144  |1 http://isni.org/isni/0000000062423616. 
245 1 0 |a Bayesian Modeling of Measurement Error in Predictor Variables Using Item Response Theory. Research Report  |h [electronic resource] /  |c Jean-Paul Fox and Cees A. W. Glas. 
260 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 2000. 
300 |a 39 pages. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a ERIC Document Number: ED450128. 
500 |a Availability: Faculty of Educational Science and Technology, University of Twente, TO/OMD, P.O. Box 7500 AE Enschede, The Netherlands.  |5 ericd. 
520 |a This paper focuses on handling measurement error in predictor variables using item response theory (IRT). Measurement error is of great important in assessment of theoretical constructs, such as intelligence or the school climate. Measurement error is modeled by treating the predictors as unobserved latent variables and using the normal ogive model to describe the relations between latent variables and their observed indicator variables. The predictor variables can be defined at any level of a hierarchical regression model. The predictor variables are latent but can be measured indirectly by using tests or questionnaires. The observed responses on these itemized instruments are related to the latent predictors by an IRT model. It is shown that the multilevel model with measurement error in the observed predictor variables can be estimated in a Bayesian framework using Gibbs sampling. Handling measurement error via the normal ogive model is compared with alternative approaches using the classical true score model. An example using real data from a mathematics test taken by 3,713 fourth graders is given. (Contains 4 tables, 1 figure, and 45 references.) (Author/SLD) 
650 1 7 |a Bayesian Statistics.  |2 ericd. 
650 1 7 |a Error of Measurement.  |2 ericd. 
650 1 7 |a Item Response Theory.  |2 ericd. 
650 1 7 |a Predictor Variables.  |2 ericd. 
700 1 |a Glas, Cees A. W.  |0 http://id.loc.gov/authorities/names/n00089805  |1 http://isni.org/isni/0000000384109638. 
710 2 |a Technische Hogeschool Twente.  |b Faculty of Educational Science and Technology. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED450128.pdf  |z Full Text (via ERIC) 
907 |a .b61098942  |b 07-05-22  |c 10-09-10 
998 |a web  |b 10-26-12  |c b  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
907 |a .b61098942  |b 10-15-19  |c 10-09-10 
944 |a MARS - RDA ENRICHED 
948 |a bslw19/20 : sep : ess 
907 |a .b61098942  |b 10-01-19  |c 10-09-10 
956 |a ERIC 
999 f f |i 6956e75a-5b6c-5735-8e08-45924f7763eb  |s 497d733f-6c3c-5cc9-b699-1d1bab75ca40 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED450128  |h Other scheme  |i web  |n 1