Estimation of Item Parameters and the GEM Algorithm [microform] / Robert K. Tsutakawa.

The models and procedures discussed in this paper are related to those presented in Bock and Aitkin (1981), where they considered the 2-parameter probit model and approximated a normally distributed prior distribution of abilities by a finite and discrete distribution. One purpose of this paper is t...

Full description

Saved in:
Bibliographic Details
Online Access: Request ERIC Document
Main Author: Tsutakawa, Robert K.
Format: Microfilm Book
Language:English
Published: [Place of publication not identified] : Distributed by ERIC Clearinghouse, 1982.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6197645
003 CoU
007 he u||024||||
008 820701s1982 xx |||| bt ||| | eng d
005 20240722193011.9
035 |a (ERIC)ed264266 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED264266 
100 1 |a Tsutakawa, Robert K.  |0 http://id.loc.gov/authorities/names/n90721598  |1 http://isni.org/isni/0000000116201585 
245 1 0 |a Estimation of Item Parameters and the GEM Algorithm  |h [microform] /  |c Robert K. Tsutakawa. 
260 |a [Place of publication not identified] :  |b Distributed by ERIC Clearinghouse,  |c 1982. 
300 |a 10 pages 
336 |a text  |b txt  |2 rdacontent. 
337 |a microform  |b h  |2 rdamedia. 
338 |a microfiche  |b he  |2 rdacarrier. 
500 |a Sponsoring Agency: Office of Naval Research, Arlington, VA. Personnel and Training Research Programs Office.  |5 ericd. 
500 |a Contract Number: N00014-81-K-0265.  |5 ericd. 
500 |a Contract Number: NR-150-464.  |5 ericd. 
500 |a ERIC Note: In: Item Response Theory and Computerized Adaptive Testing Conference Proceedings (Wayzata, MN, July 27-30, 1982) (TM 850 744).  |5 ericd. 
500 |a ERIC Document Number: ED264266. 
520 |a The models and procedures discussed in this paper are related to those presented in Bock and Aitkin (1981), where they considered the 2-parameter probit model and approximated a normally distributed prior distribution of abilities by a finite and discrete distribution. One purpose of this paper is to clarify the nature of the general EM (GEM) solution, assuming that convergence has already taken place. For this purpose the general situation is considered and conditions are then given under which the GEM solution maximizes the likelihood function based on incomplete data. For the 2-parameter logistic model, the equations occurring at each iteration of the GEM algorithm are compared with the likelihood equations for the incomplete data. The GEM approach is shown as computationally simpler than the solution via direct methods. In practice, for latent trait applications in particular, once there is convergence, the author feels it is usually easy to test the solution by examining the likelihood function in a neighborhood of the solution and to verify whether it is at least a local maximum. This paper concludes by demonstrating that for the one parameter logistic model, convergence by the concavity of the log-likelihood function is assured. (PN) 
521 8 |a Researchers.  |b ericd. 
533 |a Microfiche.  |b [Washington D.C.]:  |c ERIC Clearinghouse  |e microfiches : positive. 
583 1 |a committed to retain  |c 20240101  |d 20490101  |5 CoU  |f Alliance Shared Trust  |u https://www.coalliance.org/shared-print-archiving-policies 
650 1 7 |a Estimation (Mathematics)  |2 ericd 
650 1 7 |a Item Analysis.  |2 ericd 
650 1 7 |a Latent Trait Theory.  |2 ericd 
650 1 7 |a Mathematical Models.  |2 ericd 
650 1 7 |a Maximum Likelihood Statistics.  |2 ericd 
650 0 7 |a Psychometrics.  |2 ericd 
650 0 7 |a Statistical Studies.  |2 ericd 
856 4 2 |z Request ERIC Document  |u https://colorado.idm.oclc.org/login?url=https://colorado.illiad.oclc.org/illiad/COD/illiad.dll?Action=10&Form=23 
907 |a .b61976453  |b 01-18-22  |c 10-10-10 
944 |a MARS - RDA ENRICHED 
998 |a pas  |b 10-10-10  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 41a57880-5769-5c6f-b9a0-913c759ea413  |s 1bc783b4-5a34-55f0-9cc5-c34c310f60a9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Offsite  |d PASCAL Offsite  |e ED264266  |h Other scheme  |i microfiche  |n 1