The Normal Curve Takes Many Forms [electronic resource] : A Review of Skewness and Kurtosis / Wren M. Bump.

The normal curve has long been important in statistics. Most interval variables yield normal or quasi-normal distributions when data are collected from large samples, and the normal "Z" distribution is also used as a test statistic (e.g., to test differences between two means when sample s...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Bump, Wren M.
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1991.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b6212486
003 CoU
005 20080221101545.5
006 m d f
007 cr un
008 910101s1991 xx |||| o ||| s eng d
035 |a (ERIC)ed342790 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED342790 
099 |f ERIC DOC #  |a ED342790 
100 1 |a Bump, Wren M. 
245 1 4 |a The Normal Curve Takes Many Forms  |h [electronic resource] :  |b A Review of Skewness and Kurtosis /  |c Wren M. Bump. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1991. 
300 |a 17 p. 
500 |a ERIC Document Number: ED342790. 
500 |a ERIC Note: Paper presented at the Annual Meeting of the Southwest Educational Research Association (San Antonio, TX, January 24-26, 1991).  |5 ericd. 
520 |a The normal curve has long been important in statistics. Most interval variables yield normal or quasi-normal distributions when data are collected from large samples, and the normal "Z" distribution is also used as a test statistic (e.g., to test differences between two means when sample size is large, since "t" approaches "Z" as degrees of freedom increase). Thus, almost all statistics books discuss the normal curve. Nevertheless, many researchers do not fully understand some concepts related to the normal curve, such as skewness and kurtosis statistics, because these two statistics often receive cursory instructional treatment, given the press for instructional time. This paper illustrates that shape statistics remove the influence of distribution variability (i.e., shape statistics always initially involve the conversion of raw scores to "Z" form, SD=1=V, so that impact of variability is held constant). Nine figures illustrate the shape statistics, and one table lists raw scores and "Z" scores. An eight-item list of references is included. (Author/SLD) 
650 0 7 |a Data Collection.  |2 ericd. 
650 0 7 |a Equations (Mathematics)  |2 ericd. 
650 0 7 |a Functions (Mathematics)  |2 ericd. 
650 0 7 |a Graphs.  |2 ericd. 
650 1 7 |a Mathematical Models.  |2 ericd. 
650 1 7 |a Probability.  |2 ericd. 
650 1 7 |a Raw Scores.  |2 ericd. 
650 1 7 |a Statistical Distributions.  |2 ericd. 
650 0 7 |a Test Results.  |2 ericd. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED342790.pdf  |z Full Text (via ERIC) 
907 |a .b62124869  |b 07-06-22  |c 10-10-10 
998 |a web  |b 10-24-12  |c f  |d m   |e -  |f eng  |g xx   |h 4  |i 1 
956 |a ERIC 
999 f f |i 5603f4ee-9cd9-512a-8501-b1dfcb397d50  |s d5c65f86-22ab-5bb0-9ec3-11b152ecfcf7 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED342790  |h Other scheme  |i web  |n 1