Design Coding and Interpretation in Multiple Regression [microform] / Clifford E. Lunneborg.

The multiple regression or general linear model (GLM) is a parameter estimation and hypothesis testing model which encompasses and approaches the more familiar fixed effects analysis of variance (ANOVA). The transition from ANOVA to GLM is accomplished, roughly, by coding treatment level or group me...

Full description

Saved in:
Bibliographic Details
Online Access: Request ERIC Document
Main Author: Lunneborg, Clifford E.
Corporate Author: University of Washington. Educational Assessment Center
Format: Microfilm Book
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1980.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6289889
003 CoU
007 he u||024||||
008 800801s1980 xx |||| bt ||| | eng d
005 20240722191917.7
035 |a (ERIC)ed194583 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED194583 
100 1 |a Lunneborg, Clifford E. 
245 1 0 |a Design Coding and Interpretation in Multiple Regression  |h [microform] /  |c Clifford E. Lunneborg. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1980. 
300 |a 25 p. 
336 |a text  |2 rdacontent. 
337 |a microform  |2 rdamedia. 
338 |a microfiche  |2 rdacarrier. 
500 |a ERIC Note: A version of this paper was presented at the Annual Meeting of the American Psychological Association (88th, Montreal, Quebec, Canada, September 1-5, 1980).  |5 ericd. 
500 |a ERIC Document Number: ED194583. 
520 |a The multiple regression or general linear model (GLM) is a parameter estimation and hypothesis testing model which encompasses and approaches the more familiar fixed effects analysis of variance (ANOVA). The transition from ANOVA to GLM is accomplished, roughly, by coding treatment level or group membership to produce a set of predictor or dependent variables. How treatments should be coded is controversial. The present paper redevelops the independence of hypothesis testing and of estimation (point or interval) from the coding of variables. Further, this redevelopment, based on the simple concepts of a design template (a k x k matrix in the k groups design) and of an expectation template (a k element vector), permits mean contrasts or parameter constraints to be directly stated and easily translated into a natural and common computational form. The technique is developed in three parts. First, the essentials of the GLM are reviewed. Then, forms for stating hypothesis or estimating contrasts are developed which will be independent of coding. Finally, the approach is illustrated for the three Serlin and Levin designs, for unbalanced designs, and for designs with missing cells. (Author/CP) 
533 |a Microfiche.  |b [Washington D.C.]:  |c ERIC Clearinghouse  |e microfiches : positive. 
583 1 |a committed to retain  |c 20240101  |d 20490101  |5 CoU  |f Alliance Shared Trust  |u https://www.coalliance.org/shared-print-archiving-policies 
650 0 7 |a Analysis of Covariance.  |2 ericd. 
650 1 7 |a Analysis of Variance.  |2 ericd. 
650 0 7 |a Hypothesis Testing.  |2 ericd. 
650 1 7 |a Mathematical Models.  |2 ericd. 
650 1 7 |a Matrices.  |2 ericd. 
650 1 7 |a Multiple Regression Analysis.  |2 ericd. 
650 1 7 |a Sampling.  |2 ericd. 
710 2 |a University of Washington.  |b Educational Assessment Center. 
856 4 2 |z Request ERIC Document  |u https://colorado.idm.oclc.org/login?url=https://colorado.illiad.oclc.org/illiad/COD/illiad.dll?Action=10&Form=23 
907 |a .b62898899  |b 01-18-22  |c 10-13-10 
998 |a pas  |b 10-14-10  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i a1072941-2a28-55de-b5b4-c80bf9fe87ab  |s d59e514d-085d-513b-9230-8218e7700b3e 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Boulder Campus  |c Offsite  |d PASCAL Offsite  |e ED194583  |h Other scheme  |i microfiche  |n 1