A Review of Nonparametric Alternatives to Analysis of Covariance [electronic resource] / Stephen F. Olejnik and James Algina.

Five distribution-free alternatives to parametric analysis of covariance (ANCOVA) are presented and demonstrated using a specific data example. The procedures considered are those suggested by Quade (1967); Puri and Sen (1969); McSweeney and Porter (1971); Burnett and Barr (1978); and Shirley (1981)...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Olejnik, Stephen F.
Other Authors: Algina, James
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1984.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b6316368
003 CoU
005 20080221101701.8
006 m d f
007 cr un
008 840401s1984 xx |||| o ||| s eng d
035 |a (ERIC)ed246063 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED246063 
099 |f ERIC DOC #  |a ED246063 
100 1 |a Olejnik, Stephen F. 
245 1 2 |a A Review of Nonparametric Alternatives to Analysis of Covariance  |h [electronic resource] /  |c Stephen F. Olejnik and James Algina. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1984. 
300 |a 46 p. 
500 |a ERIC Document Number: ED246063. 
500 |a ERIC Note: Paper presented at the Annual Meeting of the American Educational Research Association (68th, New Orleans, LA, April 23-27, 1984).  |5 ericd. 
520 |a Five distribution-free alternatives to parametric analysis of covariance (ANCOVA) are presented and demonstrated using a specific data example. The procedures considered are those suggested by Quade (1967); Puri and Sen (1969); McSweeney and Porter (1971); Burnett and Barr (1978); and Shirley (1981). The results of simulation studies investigating these procedures regarding their respective Type I error rate under a null condition and their statistical power are also reviewed. The results indicate that the nonparametric procedures have appropriate Type I error rates only for those situations in which parametric ANCOVA is robust to violations of data assumptions. In terms of statistical power, nonparametric alternatives to parametric ANCOVA provide a considerable power advantage only for situations where extreme violations of assumptions have occurred and the linear relationship between measures is weak. (Author/DWH) 
521 8 |a Researchers.  |b ericd. 
650 1 7 |a Analysis of Covariance.  |2 ericd. 
650 0 7 |a Comparative Analysis.  |2 ericd. 
650 0 7 |a Hypothesis Testing.  |2 ericd. 
650 1 7 |a Mathematical Formulas.  |2 ericd. 
650 1 7 |a Nonparametric Statistics.  |2 ericd. 
650 1 7 |a Power (Statistics)  |2 ericd. 
650 0 7 |a Regression (Statistics)  |2 ericd. 
650 0 7 |a Statistical Distributions.  |2 ericd. 
700 1 |a Algina, James. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED246063.pdf  |z Full Text (via ERIC) 
907 |a .b63163688  |b 07-06-22  |c 10-13-10 
998 |a web  |b 10-23-12  |c f  |d m   |e -  |f eng  |g xx   |h 2  |i 1 
956 |a ERIC 
999 f f |i 47e53550-5449-5653-aa2c-e0f6e3835faa  |s f0569ff3-465c-5808-a396-d6e48365350a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED246063  |h Other scheme  |i web  |n 1