Algorithmic Test Design Using Classical Item Parameters. Project Psychometric Aspects of Item Banking No. 29. Research Report 88-2 [electronic resource] / Wim J. van der Linden and Jos J. Adema.

Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance, wh...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Linden, Wim J. van der
Corporate Author: Technische Hogeschool Twente. Department of Education
Other Authors: Adema, Jos J.
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1988.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b6345893
003 CoU
005 20080221101528.9
006 m d f
007 cr un
008 880301s1988 xx |||| ot ||| | eng d
035 |a (ERIC)ed309187 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED309187 
099 |f ERIC DOC #  |a ED309187 
100 1 |a Linden, Wim J. van der. 
245 1 0 |a Algorithmic Test Design Using Classical Item Parameters. Project Psychometric Aspects of Item Banking No. 29. Research Report 88-2  |h [electronic resource] /  |c Wim J. van der Linden and Jos J. Adema. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1988. 
300 |a 37 p. 
500 |a ERIC Document Number: ED309187. 
500 |a Availability: Bibliotheek, Department of Education, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.  |5 ericd. 
520 |a Two optimalization models for the construction of tests with a maximal value of coefficient alpha are given. Both models have a linear form and can be solved by using a branch-and-bound algorithm. The first model assumes an item bank calibrated under the Rasch model and can be used, for instance, when classical test theory has to serve as an interface between the item bank system and a user not familiar with modern test theory. Maximization of alpha was obtained by inserting a special constraint in a linear programming model. The second model has wider applicability and can be used with any item bank for which estimates of the classical item parameter are available. The models can be expanded to meet practical constraints with respect to test composition. An empirical study with simulated data using two item banks of 500 items was carried out to evaluate the model assumptions. For Item Bank 1 the underlying response was the Rasch model, and for Item Bank 2 the underlying model was the three-parameter model. An appendix discusses the relation between item response theory and classical parameter values and adds the case of a multidimensional item bank. Three tables present the simulation study data. (SLD) 
650 1 7 |a Algorithms.  |2 ericd. 
650 0 7 |a Computer Simulation.  |2 ericd. 
650 0 7 |a Estimation (Mathematics)  |2 ericd. 
650 0 7 |a Foreign Countries.  |2 ericd. 
650 1 7 |a Item Banks.  |2 ericd. 
650 1 7 |a Latent Trait Theory.  |2 ericd. 
650 0 7 |a Linear Programing.  |2 ericd. 
650 0 7 |a Mathematical Models.  |2 ericd. 
650 1 7 |a Test Construction.  |2 ericd. 
650 0 7 |a Test Theory.  |2 ericd. 
700 1 |a Adema, Jos J. 
710 2 |a Technische Hogeschool Twente.  |b Department of Education. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED309187.pdf  |z Full Text (via ERIC) 
907 |a .b63458937  |b 07-06-22  |c 10-14-10 
998 |a web  |b 10-24-12  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 9d5bf833-4aac-5d41-9c36-e636a87d1e56  |s be2673fa-cef7-5153-8c26-44810f5fdb9a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED309187  |h Other scheme  |i web  |n 1