Automating the design of data mining algorithms [electronic resource] : an evolutionary computation approach / Gisele L. Pappa, Alex A. Freitas.

Traditionally, evolutionary computing techniques have been applied in the area of data mining either to optimize the parameters of data mining algorithms or to discover knowledge or patterns in the data, i.e., to directly solve the target data mining problem. This book proposes a different goal for...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Pappa, Gisele L. (Gisele Lobo)
Other Authors: Freitas, Alex A., 1964-
Format: Electronic eBook
Language:English
Published: Heidelberg ; New York : Springer, ©2010.
Series:Natural computing series.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b6361214
006 m o d
007 cr |||||||||||
008 100909s2010 gw a ob 001 0 eng d
005 20240418143626.7
019 |a 559994066  |a 646878003  |a 654384570  |a 682614219  |a 771395111  |a 771395112  |a 880324375  |a 957523136  |a 957617217 
020 |a 9783642025419  |q (e-isbn) 
020 |a 3642025412  |q (e-isbn) 
020 |z 9783642025402 
020 |z 3642025404 
035 |a (OCoLC)spr663096285 
035 |a (OCoLC)663096285  |z (OCoLC)559994066  |z (OCoLC)646878003  |z (OCoLC)654384570  |z (OCoLC)682614219  |z (OCoLC)771395111  |z (OCoLC)771395112  |z (OCoLC)880324375  |z (OCoLC)957523136  |z (OCoLC)957617217 
035 |a (OCoLC)663096285  |z (OCoLC)559994066  |z (OCoLC)646878003  |z (OCoLC)654384570  |z (OCoLC)682614219  |z (OCoLC)771395111  |z (OCoLC)771395112  |z (OCoLC)880324375 
037 |a spr10.1007/978-3-642-02541-9 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d EBLCP  |d CDX  |d YDXCP  |d OSU  |d OCLCQ  |d GA0  |d E7B  |d N$T  |d OCLCQ  |d OCLCF  |d DEBSZ  |d BEDGE  |d OCLCQ  |d SLY  |d A7U  |d OCLCQ 
049 |a GWRE 
050 4 |a QA76.9.D343  |b P36 2010 
100 1 |a Pappa, Gisele L.  |q (Gisele Lobo)  |0 http://id.loc.gov/authorities/names/nb2010000050. 
245 1 0 |a Automating the design of data mining algorithms  |h [electronic resource] :  |b an evolutionary computation approach /  |c Gisele L. Pappa, Alex A. Freitas. 
260 |a Heidelberg ;  |a New York :  |b Springer,  |c ©2010. 
300 |a 1 online resource (xiii, 187 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Natural computing series,  |x 1619-7127. 
504 |a Includes bibliographical references and index. 
505 0 |a Introduction -- Data Mining -- Evolutionary Algorithms -- Evolutionary Algorithms for Automating the Parameter Setting and the Partial Design of Data Mining Algorithms -- A New Grammar-based Genetic Programming System for Automating the Design of Full Rule Induction Algorithms -- Computational Results on the Automatic Design of Full Induction Algorithms -- Conclusions. 
520 |a Traditionally, evolutionary computing techniques have been applied in the area of data mining either to optimize the parameters of data mining algorithms or to discover knowledge or patterns in the data, i.e., to directly solve the target data mining problem. This book proposes a different goal for evolutionary algorithms in data mining: to automate the design of a data mining algorithm, rather than just optimize its parameters. The authors first offer introductory overviews on data mining, focusing on rule induction methods, and on evolutionary algorithms, focusing on genetic programming. They then examine the conventional use of evolutionary algorithms to discover classification rules or related types of knowledge structures in the data, before moving to the more ambitious objective of their research, the design of a new genetic programming system for automating the design of full rule induction algorithms. They analyze computational results from their automatically designed algorithms, which show that the machine-designed rule induction algorithms are competitive when compared with state-of-the-art human-designed algorithms. Finally the authors examine future research directions. This book will be useful for researchers and practitioners in the areas of data mining and evolutionary computation. 
588 0 |a Print version record. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073. 
650 0 |a Computer algorithms.  |0 http://id.loc.gov/authorities/subjects/sh91000149. 
650 7 |a Computer algorithms.  |2 fast  |0 (OCoLC)fst00872010. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946. 
700 1 |a Freitas, Alex A.,  |d 1964-  |0 http://id.loc.gov/authorities/names/n97096438  |1 http://isni.org/isni/0000000122843285. 
776 0 8 |i Print version:  |a Pappa, Gisele L. (Gisele Lobo).  |t Automating the design of data mining algorithms.  |d Heidelberg : Springer, ©2010  |z 9783642025402  |w (DLC) 2009932832  |w (OCoLC)495595920. 
830 0 |a Natural computing series.  |0 http://id.loc.gov/authorities/names/n00003618. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-642-02541-9  |z Full Text (via Springer) 
907 |a .b63612148  |b 03-20-20  |c 10-14-10 
998 |a web  |b 05-01-17  |c g  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b63612148  |b 07-02-19  |c 10-14-10 
944 |a MARS - RDA ENRICHED 
907 |a .b63612148  |b 07-06-17  |c 10-14-10 
907 |a .b63612148  |b 05-23-17  |c 10-14-10 
915 |a I 
956 |a Springer e-books 
956 |b Springer Nature - Springer Computer Science eBooks 2010 English International 
956 |b Springer Nature - Springer Computer Science eBooks 2010 English International 
999 f f |i 64608ad3-223d-5a4d-9ba9-0c58fe474c04  |s 36917220-6b81-538c-8109-cdf20cd18cfc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.D343 P36 2010  |h Library of Congress classification  |i Ebooks, Prospector  |n 1