A Preliminary Comparison of the Effectiveness of Cluster Analysis Weighting Procedures for Within-Group Covariance Structure [electronic resource] / John R. Donoghue.

A Monte Carlo study compared the usefulness of six variable weighting methods for cluster analysis. Data were 100 bivariate observations from 2 subgroups, generated according to a finite normal mixture model. Subgroup size, within-group correlation, within-group variance, and distance between subgro...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Donoghue, John R.
Corporate Author: Educational Testing Service
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1995.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6392048
003 CoU
005 20080220152056.5
006 m d f
007 cr un
008 951001s1995 xx |||| ot ||| | eng d
035 |a (ERIC)ed393913 
040 |a ericd  |c ericd  |d MvI 
088 |a ETS-RR-95-35 
099 |f ERIC DOC #  |a ED393913 
099 |f ERIC DOC #  |a ED393913 
100 1 |a Donoghue, John R. 
245 1 2 |a A Preliminary Comparison of the Effectiveness of Cluster Analysis Weighting Procedures for Within-Group Covariance Structure  |h [electronic resource] /  |c John R. Donoghue. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1995. 
300 |a 63 p. 
500 |a ERIC Document Number: ED393913. 
500 |a ERIC Note: Version of a paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 4-8, 1994).  |5 ericd. 
520 |a A Monte Carlo study compared the usefulness of six variable weighting methods for cluster analysis. Data were 100 bivariate observations from 2 subgroups, generated according to a finite normal mixture model. Subgroup size, within-group correlation, within-group variance, and distance between subgroup centroids were manipulated. Of the clustering methods examined, the flexible average algorithm with beta equal to -.15 or -.20 gave the best recovery. Of the remaining methods, that of J. H. Ward yielded the best recovery, followed closely by beta-flexible linkage and the EML algorithm of the Statistical Analysis System. In the absence of variable weights, negative within-group correlation resulted in much poorer recovery for all clustering algorithms. The ACE weighing method of D. Art, R. Gnanadesikan, and J. R. Kettenring proved preferable overall. Clustering with Mahalanobis distance based on the pooled within-group covariance matrix indicated that knowing the correct covariance method would yield improved recovery over the ACE method approximately 10% of the time. Two appendix figures provide weighting data. (Contains 8 figures, 7 tables, 2 appendix figures, and 40 references.) (Author/SLD) 
650 0 7 |a Algorithms.  |2 ericd. 
650 1 7 |a Cluster Analysis.  |2 ericd. 
650 0 7 |a Comparative Analysis.  |2 ericd. 
650 0 7 |a Correlation.  |2 ericd. 
650 0 7 |a Monte Carlo Methods.  |2 ericd. 
650 1 7 |a Research Methodology.  |2 ericd. 
650 0 7 |a Simulation.  |2 ericd. 
710 2 |a Educational Testing Service. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED393913.pdf  |z Full Text (via ERIC) 
907 |a .b63920487  |b 07-06-22  |c 10-15-10 
998 |a web  |b 10-26-12  |c f  |d m   |e -  |f eng  |g xx   |h 2  |i 1 
956 |a ERIC 
999 f f |i 383eec77-09ba-5809-9364-73607bc27843  |s 8f903dca-f54d-5362-b6bb-eb74b066cadc 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED393913  |h Other scheme  |i web  |n 1