A New Sample Size Formula for Regression [electronic resource] / Gordon P. Brooks and Robert S. Barcikowski.

The focus of this research was to determine the efficacy of a new method of selecting sample sizes for multiple linear regression. A Monte Carlo simulation was used to study both empirical predictive power rates and empirical statistical power rates of the new method and seven other methods: those o...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Brooks, Gordon P.
Other Authors: Barcikowski, Robert S.
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1994.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b6406308
003 CoU
005 20080220152212.3
006 m d f
007 cr un
008 940401s1994 xx |||| ot ||| | eng d
035 |a (ERIC)ed412247 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED412247 
099 |f ERIC DOC #  |a ED412247 
100 1 |a Brooks, Gordon P. 
245 1 2 |a A New Sample Size Formula for Regression  |h [electronic resource] /  |c Gordon P. Brooks and Robert S. Barcikowski. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1994. 
300 |a 55 p. 
500 |a ERIC Document Number: ED412247. 
500 |a ERIC Note: Paper presented at the Annual Meeting of the American Educational Research Association (New Orleans, LA, April 1994).  |5 ericd. 
520 |a The focus of this research was to determine the efficacy of a new method of selecting sample sizes for multiple linear regression. A Monte Carlo simulation was used to study both empirical predictive power rates and empirical statistical power rates of the new method and seven other methods: those of C. N. Park and A. L. Dudycha (1974); J. Cohen (1988); C. Gatsonis and A. R. Sampson (1989); S. B. Green (1991); E. J. Pedhazur and L. P. Schmelkin (1991); and J. Stevens (1992). The power rates of the new method were found to be superior, both relatively and absolutely, to other methods across most conditions examined. The results also demonstrate both the importance of using an effect size for determining regression sample sizes and the relative importance of predictive power over statistical power for regression. The new method of sample size selection developed in this paper provides a relatively simple means to account for both concerns. (Contains 9 tables and 87 references.) (Author/SLD) 
650 1 7 |a Effect Size.  |2 ericd. 
650 0 7 |a Monte Carlo Methods.  |2 ericd. 
650 1 7 |a Power (Statistics)  |2 ericd. 
650 1 7 |a Prediction.  |2 ericd. 
650 1 7 |a Regression (Statistics)  |2 ericd. 
650 1 7 |a Sample Size.  |2 ericd. 
650 0 7 |a Selection.  |2 ericd. 
650 0 7 |a Simulation.  |2 ericd. 
700 1 |a Barcikowski, Robert S. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED412247.pdf  |z Full Text (via ERIC) 
907 |a .b64063082  |b 07-06-22  |c 10-16-10 
998 |a web  |b 10-26-12  |c f  |d m   |e -  |f eng  |g xx   |h 2  |i 1 
956 |a ERIC 
999 f f |i 5b68b6f2-c5b4-5d05-8248-d34a97a5380f  |s f9a75bc3-f3ee-5450-9019-343fea2865af 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED412247  |h Other scheme  |i web  |n 1