Predicting Rehabilitation Success [electronic resource] / Randall Parker.

Although studies have succeeded in devising statistically sophisticated prediction schemes for use in screening or placing clients in rehabilitation programs, they typically lack comparison with simpler methods, e.g., the single best predictor method. In this study of 296 disabled clients referred t...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Parker, Randall
Corporate Author: University of Texas at Austin
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1970.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b6475076
003 CoU
005 20081118081243.8
006 m d f
007 cr un
008 700101s1970 xx |||| o ||| | eng d
035 |a (ERIC)ed039580 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED039580 
100 1 |a Parker, Randall. 
245 1 0 |a Predicting Rehabilitation Success  |h [electronic resource] /  |c Randall Parker. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1970. 
300 |a 8 p. 
500 |a ERIC Document Number: ED039580. 
520 |a Although studies have succeeded in devising statistically sophisticated prediction schemes for use in screening or placing clients in rehabilitation programs, they typically lack comparison with simpler methods, e.g., the single best predictor method. In this study of 296 disabled clients referred to the St. Louis Jewish Employment Service for vocational evaluation, such a comparison was made. Variables included race, sex, age, education, 13 Wechsler Adult Intelligence Scale subtest and total scores, and 10 ratings of workshop performance. Employment status, assigned to the evaluated clients, was a further seven-categorized variable. Three prediction techniques were employed: (1) the multiple linear regression technique, (2) the multiple linear regression of factor scores, and (3) the single best predictor method. A cross-validation sample was utilized. The methodology was described and the results discussed. Two points were demonstrated: (1) the most useful prediction model may be the least statistically sophisticated model; and (2) shrinkage in predictive power upon cross-validation may be considerable, especially when regression models are used. Possible uses of prediction schemes were considered. (TL) 
650 0 7 |a Career Guidance.  |2 ericd. 
650 0 7 |a Employment Counselors.  |2 ericd. 
650 0 7 |a Employment Programs.  |2 ericd. 
650 1 7 |a Employment Services.  |2 ericd. 
650 1 7 |a Prediction.  |2 ericd. 
650 0 7 |a Rehabilitation.  |2 ericd. 
650 1 7 |a Rehabilitation Counseling.  |2 ericd. 
650 1 7 |a Rehabilitation Programs.  |2 ericd. 
650 1 7 |a Vocational Rehabilitation.  |2 ericd. 
650 0 7 |a Vocational Training Centers.  |2 ericd. 
710 2 |a University of Texas at Austin. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED039580.pdf  |z Full Text (via ERIC) 
907 |a .b64750760  |b 07-06-22  |c 10-19-10 
998 |a web  |b 10-12-12  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i 6fd90521-1a35-5aec-8ce7-667f39092411  |s 8a46b92a-16da-591c-9627-a5164e8d7215 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED039580  |h Other scheme  |i web  |n 1