Comparison of Three Common Experimental Designs to Improve Statistical Power When Data Violate Parametric Assumptions [electronic resource] / Andrew C. Porter and Maryellen McSweeney.

A Monte Carlo technique was used to investigate the small sample goodness of fit and statistical power of several nonparametric tests and their parametric analogues when applied to data which violate parametric assumptions. The motivation was to facilitate choice among three designs, simple random a...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Author: Porter, Andrew C.
Other Authors: McSweeney, Maryellen
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 1974.
Subjects:

MARC

LEADER 00000cam a22000002u 4500
001 b6516424
003 CoU
005 20080221101625.3
006 m d f
007 cr un
008 740101s1974 xx |||| o ||| s eng d
035 |a (ERIC)ed091413 
040 |a ericd  |c ericd  |d MvI 
099 |f ERIC DOC #  |a ED091413 
099 |f ERIC DOC #  |a ED091413 
100 1 |a Porter, Andrew C. 
245 1 0 |a Comparison of Three Common Experimental Designs to Improve Statistical Power When Data Violate Parametric Assumptions  |h [electronic resource] /  |c Andrew C. Porter and Maryellen McSweeney. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 1974. 
300 |a 40 p. 
500 |a ERIC Document Number: ED091413. 
500 |a ERIC Note: Paper presented at the Annual Meeting of the American Educational Research Association (Chicago, Illinois, April, 1974).  |5 ericd. 
520 |a A Monte Carlo technique was used to investigate the small sample goodness of fit and statistical power of several nonparametric tests and their parametric analogues when applied to data which violate parametric assumptions. The motivation was to facilitate choice among three designs, simple random assignment with and without a concomitant variable and randomized blocks, and between nonparametric or parametric tests. The criteria for choice were power and robustness. The parameters of the Monte Carlo investigation were strength of relationship between the concomitant and dependent variables, number of levels of the independent variable, sample size, and location parameter. (Author) 
650 0 7 |a Analysis of Covariance.  |2 ericd. 
650 0 7 |a Analysis of Variance.  |2 ericd. 
650 1 7 |a Comparative Analysis.  |2 ericd. 
650 0 7 |a Goodness of Fit.  |2 ericd. 
650 1 7 |a Hypothesis Testing.  |2 ericd. 
650 1 7 |a Nonparametric Statistics.  |2 ericd. 
650 0 7 |a Sample Size.  |2 ericd. 
650 1 7 |a Statistical Analysis.  |2 ericd. 
650 0 7 |a Statistical Significance.  |2 ericd. 
650 1 7 |a Statistics.  |2 ericd. 
700 1 |a McSweeney, Maryellen. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED091413.pdf  |z Full Text (via ERIC) 
907 |a .b65164246  |b 07-06-22  |c 10-19-10 
998 |a web  |b 10-22-12  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i f8de8def-d440-500b-9bd2-c917c3c6736c  |s b481bb9e-7c7d-5179-8cfb-fe5c3e6c5a81 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED091413  |h Other scheme  |i web  |n 1