Sciences of geodesy. I, Advances and future directions [electronic resource] / Guochang Xu, editor.
This reference and handbook includes contributions from the world's leading experts and describes the history, theory, development, research highlights, problems and future of the individual geodetic fields. The subjects include: Geodesy, Satellite Geodesy, Marine Geodesy, GPS/Galileo Systems,...
Saved in:
Online Access: |
Full Text (via Springer) |
---|---|
Other Authors: | |
Other title: | Advances and future directions. |
Format: | Electronic eBook |
Language: | English |
Published: |
Heidelberg ; New York :
Springer,
©2010.
|
Series: | Sciences of geodesy ;
I. |
Subjects: |
Table of Contents:
- Note continued: 2.5.3. Adaptive Factor by Exponential Function
- 2.5.4. Adaptive Factor by Zero and One
- 2.5.5. Actual Computation and Analysis
- 2.6. Comparison of Two Fading Filters and Adaptively Robust Filter
- 2.6.1. Principles of Two Kinds of Fading Filters
- 2.6.2. Comparison of Fading Filter and Adaptive Filter
- 2.6.3. Actual COmputation and Analysis
- 2.7. Comparison of Sage Adaptive Filter and Adaptively Robust Filter
- 2.7.1. IAE Windowing Method
- 2.7.2. RAE Windowing Method
- 2.7.3. Problems of the Windowing Estimation for Covariance Matrix of Kinematic Model
- 2.8. Some Application Examples
- References
- 3. Airborne Gravity Field Determination / Arne V. Olesen
- 3.1. Introduction
- 3.2. Principles of Airborne Gravimetry
- 3.3. Filtering of Airborne Gravity
- 3.4. Some Results of Large-Scale Government Airborne Surveys
- 3.5. Downward Continuation of Airborne Gravimetry
- 3.6. Use of Airborne Gravimetry for Geoid Determination
- 3.6.1. Case Story of Mongolian Geoid
- 3.7. Conclusions and Outlook
- References
- 4. Analytic Orbit Theory / Guochang Xu
- 4.1. Introduction
- 4.2. Perturbed Equation of Satellite Motion
- 4.2.1. Lagrangian-Perturbed Equation of Satellite Motion
- 4.2.2. Gaussian-Perturbed Equation of Satellite Motion
- 4.2.3. Keplerian Motion
- 4.3. Singularity-Free and Simplified Equations
- 4.3.1. Problem of Singularity of the Solutions
- 4.3.2. Disturbed Equations in the Case of Circular Orbit
- 4.3.3. Disturbed Equations in the Case of Equatorial Orbit
- 4.3.4. Disturbed Equations in the Case of Circular and Equatorial Orbit
- 4.3.5. Singularity-Free Disturbed Equations of Motion
- 4.3.6. Simplified Singularity-Free Disturbed Equations of Motion
- 4.3.7. Singularity-Free Gaussian Equations of Motion
- 4.4. Solutions of Extraterrestrial Disturbances.
- Note continued: 4.4.1. Key Notes to the Problems
- 4.4.2. Solutions of Disturbance of Solar Radiation Pressure
- 4.4.3. Solutions of Disturbance of Atmospheric Drag
- 4.4.4. Solutions of Disturbance of the Sun
- 4.4.5. Solutions of Disturbance of the Moon
- 4.4.6. Solutions of Disturbance of Planets
- 4.4.7. Summary
- 4.5. Solutions of Geopotential Perturbations
- 4.6. Principle of Numerical Orbit Determination
- 4.7. Principle of Analytic Orbit Determination
- 4.8. Summary and Discussions
- References
- 5. Deformation and Tectonics: Contribution of GPS Measurements to Plate Tectonics
- Overview and Recent Developments / Rui Manuel Fernandes
- 5.1.Introduction
- 5.2. Plate Tectonic Models
- 5.3. Mapping Issues
- 5.4. Geophysical Corrections for the GPS-Derived Station Positions
- 5.5. Time-Series Analysis
- 5.6. GPS and Geodynamics
- An Example
- 5.7. Further Developments
- References
- 6. Earth Rotation / Harald Schuh
- 6.1. Reference Systems
- 6.2. Polar Motion
- 6.3. Variations of Length-of-Day and & Delta;UT
- 6.4. Physical Model of Earth Rotation
- 6.4.1. Balance of Angular Momentum in the Earth System
- 6.4.2. Solid Earth Deformations
- 6.4.3. Solution of the Euler-Liouville Equation
- 6.5. Relation Between Modelled and Observed Variations of Earth Rotation
- References
- 7. Equivalence of GPS Algorithms and Its Inference / Ta-Kang Yeh
- 7.1.Introduction
- 7.2. Equivalence of Undifferenced and Differencing Algorithms
- 7.2.1. Introduction
- 7.2.2. Formation of Equivalent Observation Equations
- 7.2.3. Equivalent Equations of Single Differences
- 7.2.4. Equivalent Equations of Double Differences
- 7.2.5. Equivalent Equations of Triple Differences
- 7.2.6. Method of Dealing with the Reference Parameters
- 7.2.7. Summary of the Unified Equivalent Algorithm.
- Note continued: 7.3. Equivalence of the Uncombined and Combining Algorithms
- 7.3.1. Uncombined GPS Data Processing Algorithms
- 7.3.2. Combining Algorithms of GPS Data Processing
- 7.3.3. Secondary GPS Data Processing Algorithms
- 7.3.4. Summary of the Combining Algorithms
- 7.4. Parameterisation of the GPS Observation Model
- 7.4.1. Evidence of the Parameterisation Problem of the Undifferenced Observation Model
- 7.4.2. Method of Uncorrelated Bias Parameterisation
- 7.4.3. Geometry-Free Illustration
- 7.4.4. Correlation Analysis in the Case of Phase-Code Combinations
- 7.4.5.Conclusions and Comments on Parameterisation
- 7.5. Equivalence of the GPS Data Processing Algorithms
- 7.5.1. Equivalence Theorem of GPS Data Processing Algorithms
- 7.5.2. Optimal Baseline Network Forming and Data Condition
- 7.5.3. Algorithms Using Secondary GPS Observables
- 7.5.4. Non-equivalent Algorithms
- 7.6. Inferences of Equivalence Principle
- 7.6.1. Diagonalisation Algorithm
- 7.6.2. Separability of the Observation Equation
- 7.6.3. Optimal Ambiguity Search Criteria
- 7.7. Summary
- References
- 8. Marine Geodesy / Joerg Reinking
- 8.1Introduction
- 8.2. Bathymetry and Hydrography
- 8.2.1. Scope of Work
- 8.2.2. Hydroacoustic Measurements
- 8.3. Precise Navigation
- 8.3.1. Maps of Coastal Waters and Approach Channels
- 8.3.2. ENC and ECDIS
- 8.3.3. Ship's Attitude
- 8.3.4. Hydrodynamics of Ships
- 8.4. Conclusion
- References
- 9. Satellite Laser Ranging / Ludwig Combrinck
- 9.1. Background
- 9.1.1. Introduction
- 9.1.2. Basic Principles
- 9.2. Range Model
- 9.2.1. Atmospheric Delay Correction
- 9.2.2. Centre-of-Mass Correction
- 9.2.3. SLR Station Range and Time Bias
- 9.2.4. Relativistic Range Correction
- 9.3. Force and Orbital Model
- 9.3.1 tIntroduction.
- Note continued: 9.3.2. Orbital Modelling
- 9.3.3. Force Model
- 9.4. Calculated Range
- 9.5. SLR System and Logistics
- 9.5.1. System Configuration
- 9.6. Network and International Collaboration
- 9.6.1. Tracking Network
- 9.6.2. International Laser Ranging Service
- 9.7. Summary
- References
- 10. Superconducting Gravimetry / Jurgen Neumeyer
- 10.1. Introduction
- 10.2. Description of the Instrument
- 10.2.1. Gravity Sensing Unit
- 10.2.2. Tilt Compensation System
- 10.2.3. Dewar and Compressor
- 10.2.4. Gravimeter Electronic Package
- 10.2.5. SG Performance
- 10.3. Site Selection and Observatory Design
- 10.4. Calibration of the Gravity Sensor
- 10.4.1. Calibration Factor
- 10.4.2. Phase Shift
- 10.5. Noise Characteristics
- 10.5.1. Noise Magnitude
- 10.5.2. Noise Caused by Misaligned Instrumental Tilt
- 10.6. Modelling of the Principal Constituents of the Gravity Signal
- 10.6.1. Theoretical Earth Tides and Tidal Acceleration
- 10.6.2. Gravity Variations Induced by the Atmosphere
- 10.6.3. Hydrology-Induced Gravity Variation
- 10.6.4. Ocean Tide Loading Gravity Effect
- 10.6.5. Polar Motion
- 10.6.6. Instumental Drift
- 10.7. Analysis of Surface Gravity Effects
- 10.7.1. Pre-processing
- 10.7.2. Earth Tides
- 10.7.3. Nearly Diurnal-Free Wobble
- 10.7.4. Polar Motion
- 10.7.5. Free Oscillation of the Earth
- 10.7.6. Translational Oscillations of the Inner Core (Slichter Triplet)
- 10.7.7. Co-seismic Gravity Change
- 10.7.8. Gravity Residuals
- 10.8. Combination of Ground (SG) and Space Techniques
- 10.8.1. Combination of SG and GPS Measurements
- 10.8.2. Comparison of SG, GRACE and Hydrological Models-Derived Gravity Variations
- 10.9. Future Applications
- References
- 11. Synthetic Aperture Radar Interferometry / Ye Xia
- 11.1.Introduction.
- Note continued: 11.2. Synthetic Aperture Radar Imaging
- 11.2.1. Radar Transmitted and Received Signal
- 11.2.2. Impulse Response of SAR
- 11.2.3. Pulse Compression (Focus) and Doppler Frequency
- 11.2.4. Spotlight Mode
- 11.2.5. ScanSAR Mode
- 11.3. SAR Interferometry
- 11.3.1. Principle of SAR Interferometry
- 11.3.2. Phase Unwrapping
- 11.3.3. Image Registration
- 11.3.4. Coherence of SAR Images
- 11.4. Differential SAR Interferometry
- 11.4.1. Principle of D-INSAR
- 11.4.2. Persistent Scatterer SAR Interferometry
- 11.4.3. Example: Coseismic Deformation Measurement of Bam Earthquake
- 11.4.4. Example: Subsidence Monitoring in Tianjin Region
- 11.5. SAR Interferometry with Corner Reflectors (CR-INSAR)
- 11.5.1. Orientation of the Corner Reflectors
- 11.5.2. Interpolation Kernel Design and Co-registration
- 11.5.3. Phase Pattern of Flat Terrain
- 11.5.4. Elevation-Phase-Relation Matrix Ch and Phase Unwrapping
- 11.5.5. Differential Interferogram Modelling
- 11.5.6. CR-INSAR Example: Landslide Monitoring in Three Gorges Area
- 11.6. High-Resolution TerraSAR-X
- References.