|
|
|
|
LEADER |
00000cam a2200000xa 4500 |
001 |
b6590265 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
100930s2010 nyua ob 001 0 eng d |
005 |
20240418143933.7 |
019 |
|
|
|a 693779242
|a 747719540
|a 750173954
|a 771401013
|a 816638558
|a 824163802
|a 900604105
|
020 |
|
|
|a 9781441955944
|q (e-book)
|
020 |
|
|
|a 1441955941
|q (e-book)
|
020 |
|
|
|a 1282980718
|
020 |
|
|
|a 9781282980716
|
020 |
|
|
|z 9781441955937
|
020 |
|
|
|z 1441955933
|
024 |
7 |
|
|a 10.1007/978-1-4419-5594-4
|
035 |
|
|
|a (OCoLC)spr694146690
|
035 |
|
|
|a (OCoLC)694146690
|z (OCoLC)693779242
|z (OCoLC)747719540
|z (OCoLC)750173954
|z (OCoLC)771401013
|z (OCoLC)816638558
|z (OCoLC)824163802
|z (OCoLC)900604105
|
037 |
|
|
|a spr10.1007/978-1-4419-5594-4
|
040 |
|
|
|a E7B
|b eng
|e pn
|c E7B
|d OCLCQ
|d GW5XE
|d OUN
|d CEF
|d CUS
|d NLGGC
|d OCLCQ
|d HNK
|d SNK
|d IDEBK
|d N$T
|d OCLCQ
|d BEDGE
|d COO
|d A7U
|d OCLCF
|d YDXCP
|d EBLCP
|d DEBSZ
|d OCLCQ
|
049 |
|
|
|a GWRE
|
050 |
|
4 |
|a QD569
|b .T44 2010eb
|
245 |
0 |
0 |
|a Theory and experiment in electrocatalysis
|h [electronic resource] /
|c Perla B. Balbuena, Venkat R. Subramanian, editors.
|
260 |
|
|
|a New York :
|b Springer,
|c ©2010.
|
300 |
|
|
|a 1 online resource (xxiv, 578 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent.
|
337 |
|
|
|a computer
|b c
|2 rdamedia.
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier.
|
490 |
1 |
|
|a Modern aspects of electrochemistry,
|x 0076-9924 ;
|v no. 50.
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
0 |
|g Note continued:
|g 1.
|t On Unmodified Pt Single Crystal Electrodes and Carbon Supports --
|g 2.
|t On Bimetallic Surfaces and Alloys on Different Supports --
|g III.
|t Theoretical Studies on the Oxygen Reduction Reaction --
|g 1.
|t Mechanistic Studies on the ORR --
|g 2.
|t Treating Electrolyte Effects --
|g 3.
|t Simulations on Bimetallic Alloy Surfaces --
|g 4.
|t Simulations on Low-Pt Electrocatalysts --
|g IV.
|t Methods --
|g 1.
|t DFT Calculations --
|g (i).
|t Finite Systems --
|g (ii).
|t Periodic Systems --
|g 2.
|t Thermodynamic Considerations --
|g V.
|t Results and Discussion --
|g 1.
|t Electrochemical Phase Diagram --
|g 2.
|t Oxygen Reduction Reaction (ORR) --
|g (i).
|t O2 Dissociation --
|g (ii).
|t OOH/H2O2 Formation --
|g (iii).
|t Influence of Water Solvation --
|g (iv).
|t Eley-Rideal Mechanisms --
|g VI.
|t Conclusions --
|g Acknowledgements --
|g References --
|g ch. 4
|t Molecular-Level Modeling of the Structure and Proton Transport Within the Membrane Electrode Assembly of Hydrogen Proton Exchange Membrane Fuel Cells /
|r David J. Keffer --
|g I.Introduction --
|g II.
|t Morphology --
|g 1. Introduction --
|g 2.
|t Molecular Models and Simulation Details --
|g 3.
|t Results and Discussions --
|g (i).
|t Visualization --
|g (ii).
|t Cluster Size Distribution and Connectivity --
|g (iii).
|t Pair Correlation Function --
|g (iv).
|t Hydronium Hydration Histogram --
|g (v).
|t Water Density Profile --
|g (vi).
|t Hydronium Orientation at the Interface --
|g (vii).
|t Critical Gap --
|g III.
|t Transport --
|g 1.Introduction --
|g 2.
|t Coarse-Grained Reactive Molecular Dynamics Algorithm --
|g 3.
|t Proton Transport in Bulk Water --
|g (i).
|t Input from Macroscopic Model --
|g (ii).
|t Input from Quantum Mechanical Studies --
|g (iii).
|t Instantaneous Reaction and Local Equilibration --
|g (iv).
|t Simulation Details --
|g (v).
|t Results and Discussions --
|g 4.
|t Transport in Nafion --
|g (i).
|t Water and Vehicular Hydronium Diffusivities --
|g (ii).
|t Structural Diffusion of Protons --
|g IV.Conclusions --
|g Acknowledgements.
|
505 |
0 |
0 |
|g Note continued:
|t References --
|g ch. 5
|t Some Recent Studies on the Local Reactivity of O2 On Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds /
|r Jorge M. Seminario --
|g I.Introduction --
|g II.
|t Methodology --
|g III.
|t Nanosystems --
|g 1.
|t Clusters and Complexes --
|g 2.
|t Reactive Sites --
|g IV.
|t DOS of BUBulkLK Co, Pt, Co3Pt, Ni, and Fe --
|g V.
|t Electronic Characterization of the O2-Substrate System (LDOS) --
|g VI.
|t Local Reactivity of a Bimetallic Surface: Co3Pt --
|g 1.
|t Electronic Characterization --
|g VII.
|t Local Reactivity of Supported Pt3 Islands --
|g 1.
|t Electronic Characterization --
|g 2.
|t Structural Characterization --
|g 3.
|t Binding and Dissociation Adsorption Energies --
|g VII.Conclusions --
|g Acknowledgements --
|g References --
|g ch. 6
|t Methanol Electro-Oxidation by Methanol Dehydrogenase Enzymatic Catalyst: A Computational Study /
|r D.S. Mainardi --
|g I.Introduction --
|g 1.
|t Enzymatic Catalysts for Fuel Cell Applications --
|g 2.
|t Methanol Dehydrogenase Enzyme --
|g 3.
|t Methanol Electro-oxidation by Methanol Dehydrogenase Enzymes --
|g II.
|t Methodology --
|g III.
|t Results and Discussion --
|g 1.
|t Methanol Dehydrogenase Active Site Models --
|g 2.
|t Methanol Electro-Oxidation Mechanisms --
|g (i).
|t Addition-Elimination Mechanism --
|g (ii).
|t Hydride Transfer Mechanism --
|g (iii).
|t Methanol A-E versus H-T Electro-Oxidation Mechanisms by MDH --
|g IV.Conclusions --
|g References --
|g ch. 7
|t Electrocatalytic Reactions of Chemisorbed Aromatic Compounds: Studies by ES, DEMS, STM and EC /
|r Manuel P. Soriaga --
|g I.Introduction --
|g II.
|t Experimental Protocols --
|g 1.
|t Preparation of Single-Crystal Electrode Surfaces --
|g 2.
|t Interfacial Characterization --
|g (i).
|t Electron Spectroscopy (ES) --
|g (ii).
|t Scanning Tunneling Microscopy (STM) --
|g (iii).
|t Differential Electrochemical Mass Spectrometry (DEMS) --
|g III.
|t Chemisorption and Electrocatalytic Reactivity of Aromatic Compounds --
|g 1.
|t Benzene --
|g (i).
|t EC-STM.
|
505 |
0 |
0 |
|g Note continued:
|g (ii).
|t HREELS --
|g (iii).
|t DEMS --
|g 2.
|t Hydroquinone/Benzoquinone --
|g (i).
|t HREELS --
|g (ii).
|t EC-STM --
|g (iii).
|t DEMS --
|g IV.
|t Case for a Langmuir-Hinshelwood Mechanism --
|g Acknowledgements --
|t References --
|g ch. 8
|t Review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries /
|r Venkat R. Subramanian --
|g I.Introduction --
|g II.
|t Continuum Models for Predicting Battery Behavior --
|g 1.
|t Variables and Governing Equations in the Macro Scale --
|g (i).
|t Cathode --
|g (ii).
|t Separator --
|g (iii).
|t Anode --
|g 2.
|t Variables and Governing Equations on the Micro Scale --
|g 3.
|t Micro-Macro Scale Coupled Continuum Models --
|g 4.
|t Capabilities of Continuum Models --
|g 5.
|t Limitations of Continuum Models --
|g III.
|t Modeling of Electrochemical Processes at the Micro and Nano Scale --
|g 1.
|t Performance Characteristics of Cathode Materials for Lithium Ion Batteries --
|g 2.
|t Methodology --
|g 3.
|t Parameters Employed --
|g 4.
|t Results and Discussion --
|g (i).
|t Discharge Behavior of LiCoO2 --
|g (ii).
|t Discharge Behavior of LiFePO4 --
|g 5.
|t Perspectives --
|g 6.
|t Conclusions of the Present Work --
|g IV.
|t Scope for Future Work --
|t List of Symbols --
|t References --
|g ch. 9
|t Challenges in the Design of Active and Durable Alloy Nanocatalysts For Fuel Cells /
|r Y. Ma --
|g I.
|t Introduction --
|g II.
|t Activity of Nanoalloy Catalysts Towards the ORR --
|g III.
|t Surface Atomic Distribution of an Alloy Nanoparticle --
|g IV.
|t Dissolution of Surface Atoms in Acid Medium --
|g V.Conclusions --
|g Acknowledgements --
|g References --
|g ch. 10
|t Determination of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Electrochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques /
|r C. Lamy --
|g I.Introduction --
|g II.
|t Coupled Experimental Methods --
|g 1.
|t Infrared Reflectance Spectroscopy.
|
505 |
0 |
0 |
|g Note continued:
|g 2.
|t Electrochemical Quartz Crystal Microbalance (EQCM) --
|g 3.
|t Differential Electrochemical Mass Spectrometry (DEMS) --
|g 4.
|t Radiochemical Labeling --
|g 5.
|t High Performance Liquid Chromatography (HPLC) --
|g III.
|t CO Oxidation at Platinum Based Electrocatalysts --
|g 1.
|t Adsorption and Electro-Oxidation of CO at Pure Platinum Catalysts --
|g 2.
|t Adsorption and Electro-Oxidation of CO at Platinum Based Bimetallic Electrocatalysts --
|g IV.
|t Alcohol Oxidation at Platinum-Based Electrocatalysts --
|g 1.
|t Electro-Oxidation of Methanol --
|g (i).
|t IR Studies of CH3OH Adsorption and Oxidation at Smooth Pt Electrodes --
|g (ii).
|t FTIR Studies of CH3OH Adsorption and Oxidation at Pt-Ru Bulk Alloys --
|g (iii).
|t EQCM Studies of Methanol Adsorption and Oxidation --
|g (iv).
|t DEMS Study of Methanol Adsorption and Oxidation --
|g (v).
|t Radiochemical Labeling of Methanol Adsorption --
|g (vi).
|t Mechanism of the Electro-Oxidation of Methanol --
|g 2.
|t Electro-Oxidation of Ethanol --
|g (i).
|t IR Study of the Adsorption and Oxidation of Ethanol on Pt/C Catalysts --
|g (ii).
|t Comparison of Ethanol Electro-Oxidation on Pt and PtSn Catalysts --
|g (iii).
|t DEMS Study of Ethanol Electro-Oxidation on Pt-Based Catalysts --
|g (iv).
|t HPLC Investigation of Ethanol Electro-Oxidation on Pt Electrodes --
|g (v).
|t HPLC Analysis of Ethanol Oxidation on Dispersed Pt-Based Anodes of a DEFC --
|g (vi).
|t Detailed Mechanisms of Ethanol Oxidation at Pt-Based Electrodes --
|g V.
|t Oxygen Reduction Reaction (ORR) --
|g 1.
|t Electrochemical Methods: Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrodes (RRDE) --
|g 2.
|t Electrochemical Quartz Crystal Microbalance (EQCM) --
|g 3.
|t Electrochemistry Coupled with Fourier Transform Infrared Spectroscopy (FTIRS) --
|g VI.Conclusions --
|g References --
|g ch. 11
|t In-Situ Synchrotron Spectroscopic Studies of Electrocatalysis on Highly Dispersed Nano-Materials /
|r Thomas Arruda --
|g I.Introduction.
|
505 |
0 |
0 |
|g Note continued:
|g II.
|t Current State of the Art in Surface Science Tailored for Electrocatalysis Investigations --
|g III.
|t Synchrotron Methods as a Probe of Metal Reaction Centers at an Electrochemical Interface --
|g IV.
|t In-Situ Synchrotron Spectroscopy: Methodology and Practice --
|g 1.
|t Overview of the Underlying Principle and Data Analysis --
|g (i).
|t XANES --
|g (ii).
|t New In-Situ Site Specific Surface Probe Using Synchrotron Based XANES Spectroscopy: Some Recent Results --
|g 2.
|t EXAFS --
|g V.
|t Electrocatalysis for Low-Temperature Acid-Based Fuel Cells --
|g 1.
|t Oxygen Reduction Reaction on Pt and Pt Alloy Electrocatalysts --
|g 2.
|t Electrocatalysts for Anode Electrodes Using Pt Alloys --
|g (i).
|t Reformate Tolerant Electrocatalysts --
|g (ii).
|t Direct Methanol Oxidation --
|g 3.
|t Non Pt-Based Electrocatalysts --
|g (i).
|t Current State of the Art in Non-Pt Chalcogenide Electrocatalyst Systems --
|g (ii).
|t Oxygen Reduction on Unique Enzymatic Active Centers --
|g VI.
|t Understanding Electrocatalytic Pathways --
|g 1.
|t Nanocluster Morphology and Unique Reaction Environment --
|g (i).
|t Highly Dispersed Pt based Electrocatalysts: Issue of Particle Size --
|g (ii).
|t Nanophase Electrocatalysts: Surface Structure of Small Particles --
|g (iii).
|t Structural Effects on Electrocatalysis by Pt: Effect of Particle Size --
|g 2.
|t Alloy Electrocatalysts: Electronic and Structural Effects on Electrocatalytic Properties of Platinum Alloys --
|g (i).
|t Cathode --
|g (ii).
|t Water Activation Studies --
|g (iii).
|t Anode --
|g 3.
|t Chalcogenide Electrocatalysts --
|g 4.
|t Co-Porphyrin Systems --
|g 5.
|t XAS as a Probe in Enzymatic Fuel Cells --
|g References.
|
588 |
0 |
|
|a Print version record.
|
650 |
|
0 |
|a Electrocatalysis.
|0 http://id.loc.gov/authorities/subjects/sh97006565.
|
650 |
|
0 |
|a Electrocatalysis
|x Experiments.
|
650 |
|
0 |
|a Electrocatalysis
|v Case studies.
|
650 |
|
0 |
|a Electrocatalysis
|x Research.
|
700 |
1 |
|
|a Balbuena, Perla B.
|0 http://id.loc.gov/authorities/names/n99013952
|1 http://isni.org/isni/000000011560215X.
|
700 |
1 |
|
|a Subramanian, Venkat R.
|0 http://id.loc.gov/authorities/names/no2010140012
|1 http://isni.org/isni/0000000127326383.
|
776 |
0 |
8 |
|i Print version:
|t Theory and experimant in electrocatalysis.
|d [S.l.] : Springer, 2010
|z 1441955933
|w (DLC) 2010938296
|w (OCoLC)681872655.
|
830 |
|
0 |
|a Modern aspects of electrochemistry ;
|v no. 50.
|0 http://id.loc.gov/authorities/names/no2010036816.
|
856 |
4 |
0 |
|u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4419-5594-4
|z Full Text (via Springer)
|
907 |
|
|
|a .b65902658
|b 09-19-20
|c 02-09-11
|
998 |
|
|
|a web
|b 05-01-17
|c g
|d b
|e -
|f eng
|g nyu
|h 0
|i 1
|
907 |
|
|
|a .b65902658
|b 07-02-19
|c 02-09-11
|
944 |
|
|
|a MARS - RDA ENRICHED
|
907 |
|
|
|a .b65902658
|b 05-23-17
|c 02-09-11
|
915 |
|
|
|a I
|
956 |
|
|
|a Springer e-books
|
956 |
|
|
|b Springer Nature - Springer Chemistry and Materials Science eBooks 2010 English International
|
956 |
|
|
|b Springer Nature - Springer Chemistry and Materials Science eBooks 2010 English International
|
999 |
f |
f |
|i 1650f49a-32cf-5e9d-8042-a47e2c9a2875
|s a02fd698-656f-5c8b-89cd-b0052e0741b1
|
952 |
f |
f |
|p Can circulate
|a University of Colorado Boulder
|b Online
|c Online
|d Online
|e QD569 .T44 2010eb
|h Library of Congress classification
|i Ebooks, Prospector
|n 1
|