Theory and experiment in electrocatalysis [electronic resource] / Perla B. Balbuena, Venkat R. Subramanian, editors.

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Balbuena, Perla B., Subramanian, Venkat R.
Format: Electronic eBook
Language:English
Published: New York : Springer, ©2010.
Series:Modern aspects of electrochemistry ; no. 50.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b6590265
006 m o d
007 cr |||||||||||
008 100930s2010 nyua ob 001 0 eng d
005 20240418143933.7
019 |a 693779242  |a 747719540  |a 750173954  |a 771401013  |a 816638558  |a 824163802  |a 900604105 
020 |a 9781441955944  |q (e-book) 
020 |a 1441955941  |q (e-book) 
020 |a 1282980718 
020 |a 9781282980716 
020 |z 9781441955937 
020 |z 1441955933 
024 7 |a 10.1007/978-1-4419-5594-4 
035 |a (OCoLC)spr694146690 
035 |a (OCoLC)694146690  |z (OCoLC)693779242  |z (OCoLC)747719540  |z (OCoLC)750173954  |z (OCoLC)771401013  |z (OCoLC)816638558  |z (OCoLC)824163802  |z (OCoLC)900604105 
037 |a spr10.1007/978-1-4419-5594-4 
040 |a E7B  |b eng  |e pn  |c E7B  |d OCLCQ  |d GW5XE  |d OUN  |d CEF  |d CUS  |d NLGGC  |d OCLCQ  |d HNK  |d SNK  |d IDEBK  |d N$T  |d OCLCQ  |d BEDGE  |d COO  |d A7U  |d OCLCF  |d YDXCP  |d EBLCP  |d DEBSZ  |d OCLCQ 
049 |a GWRE 
050 4 |a QD569  |b .T44 2010eb 
245 0 0 |a Theory and experiment in electrocatalysis  |h [electronic resource] /  |c Perla B. Balbuena, Venkat R. Subramanian, editors. 
260 |a New York :  |b Springer,  |c ©2010. 
300 |a 1 online resource (xxiv, 578 pages) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Modern aspects of electrochemistry,  |x 0076-9924 ;  |v no. 50. 
504 |a Includes bibliographical references and index. 
505 0 0 |g Note continued:  |g 1.  |t On Unmodified Pt Single Crystal Electrodes and Carbon Supports --  |g 2.  |t On Bimetallic Surfaces and Alloys on Different Supports --  |g III.  |t Theoretical Studies on the Oxygen Reduction Reaction --  |g 1.  |t Mechanistic Studies on the ORR --  |g 2.  |t Treating Electrolyte Effects --  |g 3.  |t Simulations on Bimetallic Alloy Surfaces --  |g 4.  |t Simulations on Low-Pt Electrocatalysts --  |g IV.  |t Methods --  |g 1.  |t DFT Calculations --  |g (i).  |t Finite Systems --  |g (ii).  |t Periodic Systems --  |g 2.  |t Thermodynamic Considerations --  |g V.  |t Results and Discussion --  |g 1.  |t Electrochemical Phase Diagram --  |g 2.  |t Oxygen Reduction Reaction (ORR) --  |g (i).  |t O2 Dissociation --  |g (ii).  |t OOH/H2O2 Formation --  |g (iii).  |t Influence of Water Solvation --  |g (iv).  |t Eley-Rideal Mechanisms --  |g VI.  |t Conclusions --  |g Acknowledgements --  |g References --  |g ch. 4  |t Molecular-Level Modeling of the Structure and Proton Transport Within the Membrane Electrode Assembly of Hydrogen Proton Exchange Membrane Fuel Cells /  |r David J. Keffer --  |g I.Introduction --  |g II.  |t Morphology --  |g 1. Introduction --  |g 2.  |t Molecular Models and Simulation Details --  |g 3.  |t Results and Discussions --  |g (i).  |t Visualization --  |g (ii).  |t Cluster Size Distribution and Connectivity --  |g (iii).  |t Pair Correlation Function --  |g (iv).  |t Hydronium Hydration Histogram --  |g (v).  |t Water Density Profile --  |g (vi).  |t Hydronium Orientation at the Interface --  |g (vii).  |t Critical Gap --  |g III.  |t Transport --  |g 1.Introduction --  |g 2.  |t Coarse-Grained Reactive Molecular Dynamics Algorithm --  |g 3.  |t Proton Transport in Bulk Water --  |g (i).  |t Input from Macroscopic Model --  |g (ii).  |t Input from Quantum Mechanical Studies --  |g (iii).  |t Instantaneous Reaction and Local Equilibration --  |g (iv).  |t Simulation Details --  |g (v).  |t Results and Discussions --  |g 4.  |t Transport in Nafion --  |g (i).  |t Water and Vehicular Hydronium Diffusivities --  |g (ii).  |t Structural Diffusion of Protons --  |g IV.Conclusions --  |g Acknowledgements. 
505 0 0 |g Note continued:  |t References --  |g ch. 5  |t Some Recent Studies on the Local Reactivity of O2 On Pt3 Nanoislands Supported on Mono- and Bi-Metallic Backgrounds /  |r Jorge M. Seminario --  |g I.Introduction --  |g II.  |t Methodology --  |g III.  |t Nanosystems --  |g 1.  |t Clusters and Complexes --  |g 2.  |t Reactive Sites --  |g IV.  |t DOS of BUBulkLK Co, Pt, Co3Pt, Ni, and Fe --  |g V.  |t Electronic Characterization of the O2-Substrate System (LDOS) --  |g VI.  |t Local Reactivity of a Bimetallic Surface: Co3Pt --  |g 1.  |t Electronic Characterization --  |g VII.  |t Local Reactivity of Supported Pt3 Islands --  |g 1.  |t Electronic Characterization --  |g 2.  |t Structural Characterization --  |g 3.  |t Binding and Dissociation Adsorption Energies --  |g VII.Conclusions --  |g Acknowledgements --  |g References --  |g ch. 6  |t Methanol Electro-Oxidation by Methanol Dehydrogenase Enzymatic Catalyst: A Computational Study /  |r D.S. Mainardi --  |g I.Introduction --  |g 1.  |t Enzymatic Catalysts for Fuel Cell Applications --  |g 2.  |t Methanol Dehydrogenase Enzyme --  |g 3.  |t Methanol Electro-oxidation by Methanol Dehydrogenase Enzymes --  |g II.  |t Methodology --  |g III.  |t Results and Discussion --  |g 1.  |t Methanol Dehydrogenase Active Site Models --  |g 2.  |t Methanol Electro-Oxidation Mechanisms --  |g (i).  |t Addition-Elimination Mechanism --  |g (ii).  |t Hydride Transfer Mechanism --  |g (iii).  |t Methanol A-E versus H-T Electro-Oxidation Mechanisms by MDH --  |g IV.Conclusions --  |g References --  |g ch. 7  |t Electrocatalytic Reactions of Chemisorbed Aromatic Compounds: Studies by ES, DEMS, STM and EC /  |r Manuel P. Soriaga --  |g I.Introduction --  |g II.  |t Experimental Protocols --  |g 1.  |t Preparation of Single-Crystal Electrode Surfaces --  |g 2.  |t Interfacial Characterization --  |g (i).  |t Electron Spectroscopy (ES) --  |g (ii).  |t Scanning Tunneling Microscopy (STM) --  |g (iii).  |t Differential Electrochemical Mass Spectrometry (DEMS) --  |g III.  |t Chemisorption and Electrocatalytic Reactivity of Aromatic Compounds --  |g 1.  |t Benzene --  |g (i).  |t EC-STM. 
505 0 0 |g Note continued:  |g (ii).  |t HREELS --  |g (iii).  |t DEMS --  |g 2.  |t Hydroquinone/Benzoquinone --  |g (i).  |t HREELS --  |g (ii).  |t EC-STM --  |g (iii).  |t DEMS --  |g IV.  |t Case for a Langmuir-Hinshelwood Mechanism --  |g Acknowledgements --  |t References --  |g ch. 8  |t Review of Continuum Electrochemical Engineering Models and a Novel Monte Carlo Approach to Understand Electrochemical Behavior of Lithium-Ion Batteries /  |r Venkat R. Subramanian --  |g I.Introduction --  |g II.  |t Continuum Models for Predicting Battery Behavior --  |g 1.  |t Variables and Governing Equations in the Macro Scale --  |g (i).  |t Cathode --  |g (ii).  |t Separator --  |g (iii).  |t Anode --  |g 2.  |t Variables and Governing Equations on the Micro Scale --  |g 3.  |t Micro-Macro Scale Coupled Continuum Models --  |g 4.  |t Capabilities of Continuum Models --  |g 5.  |t Limitations of Continuum Models --  |g III.  |t Modeling of Electrochemical Processes at the Micro and Nano Scale --  |g 1.  |t Performance Characteristics of Cathode Materials for Lithium Ion Batteries --  |g 2.  |t Methodology --  |g 3.  |t Parameters Employed --  |g 4.  |t Results and Discussion --  |g (i).  |t Discharge Behavior of LiCoO2 --  |g (ii).  |t Discharge Behavior of LiFePO4 --  |g 5.  |t Perspectives --  |g 6.  |t Conclusions of the Present Work --  |g IV.  |t Scope for Future Work --  |t List of Symbols --  |t References --  |g ch. 9  |t Challenges in the Design of Active and Durable Alloy Nanocatalysts For Fuel Cells /  |r Y. Ma --  |g I.  |t Introduction --  |g II.  |t Activity of Nanoalloy Catalysts Towards the ORR --  |g III.  |t Surface Atomic Distribution of an Alloy Nanoparticle --  |g IV.  |t Dissolution of Surface Atoms in Acid Medium --  |g V.Conclusions --  |g Acknowledgements --  |g References --  |g ch. 10  |t Determination of Reaction Mechanisms Occurring at Fuel Cell Electrocatalysts Using Electrochemical Methods, Spectroelectrochemical Measurements and Analytical Techniques /  |r C. Lamy --  |g I.Introduction --  |g II.  |t Coupled Experimental Methods --  |g 1.  |t Infrared Reflectance Spectroscopy. 
505 0 0 |g Note continued:  |g 2.  |t Electrochemical Quartz Crystal Microbalance (EQCM) --  |g 3.  |t Differential Electrochemical Mass Spectrometry (DEMS) --  |g 4.  |t Radiochemical Labeling --  |g 5.  |t High Performance Liquid Chromatography (HPLC) --  |g III.  |t CO Oxidation at Platinum Based Electrocatalysts --  |g 1.  |t Adsorption and Electro-Oxidation of CO at Pure Platinum Catalysts --  |g 2.  |t Adsorption and Electro-Oxidation of CO at Platinum Based Bimetallic Electrocatalysts --  |g IV.  |t Alcohol Oxidation at Platinum-Based Electrocatalysts --  |g 1.  |t Electro-Oxidation of Methanol --  |g (i).  |t IR Studies of CH3OH Adsorption and Oxidation at Smooth Pt Electrodes --  |g (ii).  |t FTIR Studies of CH3OH Adsorption and Oxidation at Pt-Ru Bulk Alloys --  |g (iii).  |t EQCM Studies of Methanol Adsorption and Oxidation --  |g (iv).  |t DEMS Study of Methanol Adsorption and Oxidation --  |g (v).  |t Radiochemical Labeling of Methanol Adsorption --  |g (vi).  |t Mechanism of the Electro-Oxidation of Methanol --  |g 2.  |t Electro-Oxidation of Ethanol --  |g (i).  |t IR Study of the Adsorption and Oxidation of Ethanol on Pt/C Catalysts --  |g (ii).  |t Comparison of Ethanol Electro-Oxidation on Pt and PtSn Catalysts --  |g (iii).  |t DEMS Study of Ethanol Electro-Oxidation on Pt-Based Catalysts --  |g (iv).  |t HPLC Investigation of Ethanol Electro-Oxidation on Pt Electrodes --  |g (v).  |t HPLC Analysis of Ethanol Oxidation on Dispersed Pt-Based Anodes of a DEFC --  |g (vi).  |t Detailed Mechanisms of Ethanol Oxidation at Pt-Based Electrodes --  |g V.  |t Oxygen Reduction Reaction (ORR) --  |g 1.  |t Electrochemical Methods: Rotating Disk Electrode (RDE) and Rotating Ring Disk Electrodes (RRDE) --  |g 2.  |t Electrochemical Quartz Crystal Microbalance (EQCM) --  |g 3.  |t Electrochemistry Coupled with Fourier Transform Infrared Spectroscopy (FTIRS) --  |g VI.Conclusions --  |g References --  |g ch. 11  |t In-Situ Synchrotron Spectroscopic Studies of Electrocatalysis on Highly Dispersed Nano-Materials /  |r Thomas Arruda --  |g I.Introduction. 
505 0 0 |g Note continued:  |g II.  |t Current State of the Art in Surface Science Tailored for Electrocatalysis Investigations --  |g III.  |t Synchrotron Methods as a Probe of Metal Reaction Centers at an Electrochemical Interface --  |g IV.  |t In-Situ Synchrotron Spectroscopy: Methodology and Practice --  |g 1.  |t Overview of the Underlying Principle and Data Analysis --  |g (i).  |t XANES --  |g (ii).  |t New In-Situ Site Specific Surface Probe Using Synchrotron Based XANES Spectroscopy: Some Recent Results --  |g 2.  |t EXAFS --  |g V.  |t Electrocatalysis for Low-Temperature Acid-Based Fuel Cells --  |g 1.  |t Oxygen Reduction Reaction on Pt and Pt Alloy Electrocatalysts --  |g 2.  |t Electrocatalysts for Anode Electrodes Using Pt Alloys --  |g (i).  |t Reformate Tolerant Electrocatalysts --  |g (ii).  |t Direct Methanol Oxidation --  |g 3.  |t Non Pt-Based Electrocatalysts --  |g (i).  |t Current State of the Art in Non-Pt Chalcogenide Electrocatalyst Systems --  |g (ii).  |t Oxygen Reduction on Unique Enzymatic Active Centers --  |g VI.  |t Understanding Electrocatalytic Pathways --  |g 1.  |t Nanocluster Morphology and Unique Reaction Environment --  |g (i).  |t Highly Dispersed Pt based Electrocatalysts: Issue of Particle Size --  |g (ii).  |t Nanophase Electrocatalysts: Surface Structure of Small Particles --  |g (iii).  |t Structural Effects on Electrocatalysis by Pt: Effect of Particle Size --  |g 2.  |t Alloy Electrocatalysts: Electronic and Structural Effects on Electrocatalytic Properties of Platinum Alloys --  |g (i).  |t Cathode --  |g (ii).  |t Water Activation Studies --  |g (iii).  |t Anode --  |g 3.  |t Chalcogenide Electrocatalysts --  |g 4.  |t Co-Porphyrin Systems --  |g 5.  |t XAS as a Probe in Enzymatic Fuel Cells --  |g References. 
588 0 |a Print version record. 
650 0 |a Electrocatalysis.  |0 http://id.loc.gov/authorities/subjects/sh97006565. 
650 0 |a Electrocatalysis  |x Experiments. 
650 0 |a Electrocatalysis  |v Case studies. 
650 0 |a Electrocatalysis  |x Research. 
700 1 |a Balbuena, Perla B.  |0 http://id.loc.gov/authorities/names/n99013952  |1 http://isni.org/isni/000000011560215X. 
700 1 |a Subramanian, Venkat R.  |0 http://id.loc.gov/authorities/names/no2010140012  |1 http://isni.org/isni/0000000127326383. 
776 0 8 |i Print version:  |t Theory and experimant in electrocatalysis.  |d [S.l.] : Springer, 2010  |z 1441955933  |w (DLC) 2010938296  |w (OCoLC)681872655. 
830 0 |a Modern aspects of electrochemistry ;  |v no. 50.  |0 http://id.loc.gov/authorities/names/no2010036816. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-1-4419-5594-4  |z Full Text (via Springer) 
907 |a .b65902658  |b 09-19-20  |c 02-09-11 
998 |a web  |b 05-01-17  |c g  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b65902658  |b 07-02-19  |c 02-09-11 
944 |a MARS - RDA ENRICHED 
907 |a .b65902658  |b 05-23-17  |c 02-09-11 
915 |a I 
956 |a Springer e-books 
956 |b Springer Nature - Springer Chemistry and Materials Science eBooks 2010 English International 
956 |b Springer Nature - Springer Chemistry and Materials Science eBooks 2010 English International 
999 f f |i 1650f49a-32cf-5e9d-8042-a47e2c9a2875  |s a02fd698-656f-5c8b-89cd-b0052e0741b1 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QD569 .T44 2010eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1