Analysis and design of autonomous microwave circuits [electronic resource] / Almudena Suárez.
Analysis and Design of Autonomous Microwave Circuits provides microwave designers and oscillator designers with a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation princ...
Saved in:
Online Access: |
Full Text (via IEEE) |
---|---|
Main Author: | |
Format: | Electronic eBook |
Language: | English |
Published: |
Hoboken, N.J. : [Piscataway, NJ] :
Wiley ; IEEE,
©2009.
|
Subjects: |
Table of Contents:
- Preface
- 1. Oscillator Dynamics
- 1.1. Introduction
- 1.2. Operational Principle of Free-Running Oscillators
- 1.3. Impedance-Admittance Analysis of an Oscillator
- 1.4. Frequency-Domain Formulation of an Oscillator Circuit
- 1.5. Oscillator Dynamics
- 1.6. Phase Noise
- 2. Phase Noise
- 2.1. Introduction
- 2.2. Random Variable and random Processes
- 2.3. Noise Sources in Electronic Circuits
- 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis
- 2.5. Frequency-Domain Analysis of a Noisy Oscillator
- 3. Bifurcation Analysis
- 3.1. Introduction
- 3.2. Representation of Solutions
- 3.3. Bifurcations
- 4. Injected Oscillators and Frequency Dividers
- 4.1. Introduction
- 4.2. Injection-Locked Oscillators
- 4.3. Frequency Dividers
- 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators
- 4.5. Self-Oscillating Mixers
- 5. Nonlinear Circuit Simulation
- 5.1. Introduction
- 5.2. Time-Domain Integration
- 5.3. Fast Time-Domain Techniques
- 5.4. Harmonic Balance
- 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit
- 5.6. Envelope Transient
- 5.7. Conversion Matrix Approach
- 6. Stability Analysis Using Harmonic Balance
- 6.1. Introduction
- 6.2. Local Stability Analysis
- 6.3. Stability Analysis of Free-Running Oscillators
- 6.4. Solution Curves Versus a Circuit Parameter
- 6.5. Global Stability Analysis
- 6.6. Bifurcation Synthesis and Control
- 7. Noise Analysis Using Harmonic Balance
- 7.1. Introduction
- 7.2. Noise in Semiconductor Devices
- 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System
- 7.4. Coupled Phase and Amplitude Noise Calculation
- 7.5. Carrier Modulation Approach
- 7.6. Conversion Matrix Approach
- 7.7. Noise in Synchronized Oscillators
- 8. Harmonic Balance Techniques for Oscillator Design
- 8.1. Introduction
- 8.2. Oscillator Synthesis
- 8.3. Design of Voltage-Controlled Oscillators.
- 8.4. Maximization of Oscillator Efficiency
- 8.5. Control of Oscillator Transients
- 8.6. Phase Noise Reduction
- 9. Stabilization Techniques for Phase Noise Reduction
- 9.1. Introduction
- 9.2. Self-Injection Topology
- 9.3. Use of High-Q Resonators
- 9.4. Stabilization Loop
- 9.5. Transistor-Based Oscillators
- 10. Coupled-Oscillator Systems
- 10.1. Introduction
- 10.2. Oscillator Systems with Global Coupling
- 10.3. Coupled-Oscillator Systems for Beam Steering
- 11. Simulation Techniques for Frequency-Divider Design
- 11.1. Introduction
- 11.2. Types of frequency dividers
- 11.3. Design of Transistor-Based Regenerative Frequency Dividers
- 11.4. Design of Harmonic Injection Dividers
- 11.5. Extension of the Techniques to Subharmonic Injection Oscillators
- 12. Circuit Stabilization
- 12.1. Introduction
- 12.2. Unstable Class AB Amplifier Using Power Combiners
- 12.3. Unstable Class E/F Amplifier
- 12.4. Unstable Class E Amplifier
- 12.5. Stabilization of Oscillator Circuits
- 12.6. Stabilization of Multifunction MMIC Chips
- Index.