Analysis and design of autonomous microwave circuits [electronic resource] / Almudena Suárez.

Analysis and Design of Autonomous Microwave Circuits provides microwave designers and oscillator designers with a sound understanding of the free-running oscillation mechanism, the start-up from the noise level, and the establishment of the steady-state oscillation. It deals with the operation princ...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via IEEE)
Main Author: Suárez, Almudena, 1964-
Format: Electronic eBook
Language:English
Published: Hoboken, N.J. : [Piscataway, NJ] : Wiley ; IEEE, ©2009.
Subjects:
Table of Contents:
  • Preface
  • 1. Oscillator Dynamics
  • 1.1. Introduction
  • 1.2. Operational Principle of Free-Running Oscillators
  • 1.3. Impedance-Admittance Analysis of an Oscillator
  • 1.4. Frequency-Domain Formulation of an Oscillator Circuit
  • 1.5. Oscillator Dynamics
  • 1.6. Phase Noise
  • 2. Phase Noise
  • 2.1. Introduction
  • 2.2. Random Variable and random Processes
  • 2.3. Noise Sources in Electronic Circuits
  • 2.4. Derivation of the Oscillator Noise Spectrum Using Time-Domain Analysis
  • 2.5. Frequency-Domain Analysis of a Noisy Oscillator
  • 3. Bifurcation Analysis
  • 3.1. Introduction
  • 3.2. Representation of Solutions
  • 3.3. Bifurcations
  • 4. Injected Oscillators and Frequency Dividers
  • 4.1. Introduction
  • 4.2. Injection-Locked Oscillators
  • 4.3. Frequency Dividers
  • 4.4. Subharmonically and Ultrasubharmonically Injection-Locked Oscillators
  • 4.5. Self-Oscillating Mixers
  • 5. Nonlinear Circuit Simulation
  • 5.1. Introduction
  • 5.2. Time-Domain Integration
  • 5.3. Fast Time-Domain Techniques
  • 5.4. Harmonic Balance
  • 5.5. Harmonic Balance Analysis of Autonomous and Synchronized Circuit
  • 5.6. Envelope Transient
  • 5.7. Conversion Matrix Approach
  • 6. Stability Analysis Using Harmonic Balance
  • 6.1. Introduction
  • 6.2. Local Stability Analysis
  • 6.3. Stability Analysis of Free-Running Oscillators
  • 6.4. Solution Curves Versus a Circuit Parameter
  • 6.5. Global Stability Analysis
  • 6.6. Bifurcation Synthesis and Control
  • 7. Noise Analysis Using Harmonic Balance
  • 7.1. Introduction
  • 7.2. Noise in Semiconductor Devices
  • 7.3. Decoupled Analysis of Phase and Amplitude Perturbations in a Harmonic Balance System
  • 7.4. Coupled Phase and Amplitude Noise Calculation
  • 7.5. Carrier Modulation Approach
  • 7.6. Conversion Matrix Approach
  • 7.7. Noise in Synchronized Oscillators
  • 8. Harmonic Balance Techniques for Oscillator Design
  • 8.1. Introduction
  • 8.2. Oscillator Synthesis
  • 8.3. Design of Voltage-Controlled Oscillators.
  • 8.4. Maximization of Oscillator Efficiency
  • 8.5. Control of Oscillator Transients
  • 8.6. Phase Noise Reduction
  • 9. Stabilization Techniques for Phase Noise Reduction
  • 9.1. Introduction
  • 9.2. Self-Injection Topology
  • 9.3. Use of High-Q Resonators
  • 9.4. Stabilization Loop
  • 9.5. Transistor-Based Oscillators
  • 10. Coupled-Oscillator Systems
  • 10.1. Introduction
  • 10.2. Oscillator Systems with Global Coupling
  • 10.3. Coupled-Oscillator Systems for Beam Steering
  • 11. Simulation Techniques for Frequency-Divider Design
  • 11.1. Introduction
  • 11.2. Types of frequency dividers
  • 11.3. Design of Transistor-Based Regenerative Frequency Dividers
  • 11.4. Design of Harmonic Injection Dividers
  • 11.5. Extension of the Techniques to Subharmonic Injection Oscillators
  • 12. Circuit Stabilization
  • 12.1. Introduction
  • 12.2. Unstable Class AB Amplifier Using Power Combiners
  • 12.3. Unstable Class E/F Amplifier
  • 12.4. Unstable Class E Amplifier
  • 12.5. Stabilization of Oscillator Circuits
  • 12.6. Stabilization of Multifunction MMIC Chips
  • Index.