Dynamics of nonlinear time-delay systems / M. Lakshmanan, D.V. Senthilkumar.

Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations ha...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Lakshmanan, M. (Muthusamy)
Other Authors: Senthilkumar, D. V. (Dharmapuri Vijayan)
Format: eBook
Language:English
Published: Berlin ; Heidelberg ; New York : Springer, ©2010.
Series:Springer series in synergetics.
Springer complexity.
Subjects:

MARC

LEADER 00000cam a2200000Ka 4500
001 b6622907
006 m o d
007 cr |||||||||||
008 110214s2010 gw a ob 001 0 eng d
005 20240423171047.4
019 |a 701368983  |a 704519061  |a 743408890  |a 771384948  |a 771384952  |a 816836236  |a 823128486  |a 858880052  |a 868632089 
020 |a 9783642149382  |q (electronic bk.) 
020 |a 3642149383  |q (electronic bk.) 
020 |a 3642149375  |q (print) 
020 |a 9783642149375  |q (print) 
020 |z 9783642149375 
024 7 |a 10.1007/978-3-642-14938-2 
024 8 |a 978-3-642-14938-2  |d Springer 
035 |a (OCoLC)spr701718785 
035 |a (OCoLC)701718785  |z (OCoLC)701368983  |z (OCoLC)704519061  |z (OCoLC)743408890  |z (OCoLC)771384948  |z (OCoLC)771384952  |z (OCoLC)816836236  |z (OCoLC)823128486  |z (OCoLC)858880052  |z (OCoLC)868632089 
037 |a spr10.1007/978-3-642-14938-2 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d QE2  |d EBLCP  |d OCLCQ  |d N$T  |d E7B  |d CDX  |d YDXCP  |d IDEBK  |d OCLCQ  |d DEBSZ  |d BEDGE  |d OCLCQ  |d DA$  |d COO  |d VT2  |d OCLCQ 
049 |a GWRE 
050 4 |a TJ216  |b .L35 2010 
100 1 |a Lakshmanan, M.  |q (Muthusamy) 
245 1 0 |a Dynamics of nonlinear time-delay systems /  |c M. Lakshmanan, D.V. Senthilkumar. 
260 |a Berlin ;  |a Heidelberg ;  |a New York :  |b Springer,  |c ©2010. 
300 |a 1 online resource (xvii, 313 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file  |b PDF  |2 rda. 
490 1 |a Springer series in synergetics. 
490 1 |a Springer complexity. 
504 |a Includes bibliographical references and index. 
505 0 |a Cover -- Preface -- Contents -- Chapter 1 Delay Differential Equations -- 1.1 Introduction -- 1.1.1 DDE with Single Constant Delay -- 1.1.2 DDE with Discrete Delays -- 1.1.3 DDE with Distributed Delay -- 1.1.4 DDE with State-Dependent Delay -- 1.1.5 DDE with Time-Dependent Delay -- 1.2 Constructing the Solution for DDEs with Single Constant Delay -- 1.2.1 Linear Delay Differential Equation -- 1.2.2 Numerical Simulation of DDEs -- 1.2.3 Nonlinear Delay Differential Equations -- 1.3 Salient Features of Chaotic Time-Delay Systems -- References -- Chapter 2 Linear Stability and Bifurcation Analysis -- 2.1 Introduction -- 2.2 Linear Stability Analysis -- 2.2.1 Example: Linear Delay Differential Equation -- 2.3 A Geometric Approach to Study Stability -- 2.3.1 Example: Linear Delay Differential Equation -- 2.4 A General Approach to Determine Linear Stability of Equilibrium Points -- 2.4.1 Characteristic Equation -- 2.4.2 Stability Conditions -- 2.4.3 Stability Curves/Surfaces in the (, a, b) Parameter Space -- 2.4.4 Extension to Coupled DDEs/Complex Scalar DDEs -- 2.4.5 Bifurcation Analysis -- 2.4.6 Results of Stability Analysis -- 2.4.7 A Theorem on the Stability of Equilibrium Points -- 2.4.8 Example: Linear Delay Differential Equation -- References -- Chapter 3 Bifurcation and Chaos in Time-Delayed Piecewise Linear Dynamical System -- 3.1 Introduction -- 3.2 Simple Scalar First Order Piecewise Linear DDE -- 3.2.1 Fixed Points and Linear Stability -- 3.3 Numerical Study of the Single Scalar Piecewise Linear Time-Delay System -- 3.3.1 Dynamics in the Pseudospace -- 3.3.2 Transients -- 3.3.3 One and Two Parameter Bifurcation Diagrams -- 3.3.4 Lyapunov Exponents and Hyperchaotic Regimes -- 3.4 Experimental Realization using PSPICE Simulation -- 3.5 Stability Analysis and Chaotic Dynamics of Coupled DDEs -- 3.5.1 Fixed Points and Linear Stability -- 3.6 Numerical Analysis of the Coupled DDE -- 3.6.1 Transients -- 3.6.2 One and Two Parameter Bifurcation Diagrams -- References -- Chapter 4 A Few Other Interesting Chaotic Delay Differential Equations -- 4.1 Introduction -- 4.2 The Mackey-Glass System: A Typical Nonlinear DDE -- 4.2.1 Mackey-Glass Time-Delay System -- 4.2.2 Fixed Points and Linear Stability Analysis -- 4.2.3 Time-Delay =0 -- 4.2.4 Time-Delay>0 -- 4.2.5 Numerical Simulation: Bifurcations and Chaos -- 4.2.6 Experimental Realization Using Electronic Circuit -- 4.3 Other Interesting Scalar Chaotic Time-Delay Systems -- 4.3.1 A Simple Chaotic Delay Differential Equation -- 4.3.2 Ikeda Time-Delay System -- 4.3.3 Scalar Time-Delay System with Polynomial Nonlinearity -- 4.3.4 Scalar Time-Delay System with Other Piecewise Linear Nonlinearities -- 4.3.5 Another Form of Scalar Time-Delay System -- 4.3.6 El Ni241;o and the Delayed Action Oscillator -- 4.4 Coupled Chaotic Time-Delay Systems -- 4.4.1 Time-Delayed Chua's Circuit -- 4.4.2 Semiconductor Lasers -- 4.4.3 Neural Networks -- References -- Chapter 5 Implications of Delay Feedback: Amplitude Death and Other Effects -- 5.1 Introduction -- 5.2 Time-Delay Induced Amplitude Death -- 5.2.1 Theoretical Study: Single Oscillator -- 5.2.2 Experimental Study -- 5.3 Amplitude Death with Distributed Delay in Coupled Limit Cycle Oscillators -- 5.4 Amplitude Death in Coupled Chaotic Oscillators -- 5.5 Amplitude. 
520 |a Synchronization of chaotic systems, a patently nonlinear phenomenon, has emerged as a highly active interdisciplinary research topic at the interface of physics, biology, applied mathematics and engineering sciences. In this connection, time-delay systems described by delay differential equations have developed as particularly suitable tools for modeling specific dynamical systems. Indeed, time-delay is ubiquitous in many physical systems, for example due to finite switching speeds of amplifiers in electronic circuits, finite lengthsof vehicles in traffic flows, finite signal propagation times in biological networks and circuits, and quite generally whenever memory effects are relevant. This monograph presents the basics of chaotic time-delay systems and their synchronization with an emphasis on the effects of time-delay feedback which give rise to new collective dynamics. Special attention is devoted to scalar chaotic/hyperchaotic time-delay systems, and some higher order models, occurring in different branches of science and technology as well as to the synchronization of their coupled versions. Last but not least, the presentation as a whole strives for a balance between the necessary mathematical description of the basics and the detailed presentation of real-world applications. 
588 0 |a Print version record. 
650 0 |a Time delay systems  |x Dynamics. 
650 0 |a Nonlinear systems. 
700 1 |a Senthilkumar, D. V.  |q (Dharmapuri Vijayan) 
776 0 8 |i Print version:  |a Lakshmanan, M. (Muthusamy).  |t Dynamics of nonlinear time-delay systems.  |d Berlin : Springer-Verlag, 2010  |w (DLC) 2010936895. 
830 0 |a Springer series in synergetics. 
830 0 |a Springer complexity. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-642-14938-2  |z Full Text (via Springer) 
907 |a .b66229078  |b 07-02-19  |c 04-11-11 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
915 |a K 
956 |a Springer e-books 
956 |b Springer Nature - Springer Physics and Astronomy eBooks 2011 English International 
956 |b Springer Nature - Springer Physics and Astronomy eBooks 2011 English International 
999 f f |i 72668150-dc29-5c50-8144-e56290438f24  |s 7832aca6-7f19-5e0f-8588-72efdda28df9 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TJ216 .L35 2010  |h Library of Congress classification  |i Ebooks, Prospector  |n 1