Hyperfinite dirichlet forms and stochastic processes [electronic resource] / Sergio Albeverio, Ruzong Fan, Frederik Herzberg.
This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible...
Saved in:
Online Access: |
Full Text (via Springer) |
---|---|
Main Author: | |
Other Authors: | , |
Format: | Electronic eBook |
Language: | English |
Published: |
Berlin ; Heidelberg ; New York :
Springer,
©2011.
|
Series: | Lecture notes of the Unione Matematica Italiana ;
10. |
Subjects: |
MARC
LEADER | 00000cam a2200000xa 4500 | ||
---|---|---|---|
001 | b6689874 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 110629s2011 gw ob 001 0 eng d | ||
005 | 20240423171145.1 | ||
019 | |a 731515974 |a 771385864 |a 967326461 |a 985042840 |a 1005754785 |a 1066474352 |a 1086503688 |a 1111020489 |a 1112593499 |a 1162746001 | ||
020 | |a 9783642196591 |q (electronic bk.) | ||
020 | |a 3642196594 |q (electronic bk.) | ||
020 | |a 9783642196584 | ||
020 | |a 3642196586 | ||
024 | 7 | |a 10.1007/978-3-642-19659-1 | |
035 | |a (OCoLC)spr733543294 | ||
035 | |a (OCoLC)733543294 |z (OCoLC)731515974 |z (OCoLC)771385864 |z (OCoLC)967326461 |z (OCoLC)985042840 |z (OCoLC)1005754785 |z (OCoLC)1066474352 |z (OCoLC)1086503688 |z (OCoLC)1111020489 |z (OCoLC)1112593499 |z (OCoLC)1162746001 | ||
037 | |a spr978-3-642-19659-1 | ||
040 | |a GW5XE |b eng |e pn |c GW5XE |d NLGGC |d OCLCQ |d UV0 |d OHI |d OCLCQ |d OCLCF |d YDXCP |d OCLCQ |d TXI |d OCLCQ |d IUP |d VT2 |d Z5A |d LIP |d ESU |d IOG |d NJR |d CEF |d INT |d U3W |d AU@ |d OCLCQ |d WYU |d YOU |d OCLCQ |d OL$ |d OCLCQ |d DCT |d ERF |d AJS |d OCLCQ |d OCLCO | ||
049 | |a GWRE | ||
050 | 4 | |a QA274.2 |b .A43 2011 | |
100 | 1 | |a Albeverio, Sergio. |0 http://id.loc.gov/authorities/names/n79089350 |1 http://isni.org/isni/0000000108559990. | |
245 | 1 | 0 | |a Hyperfinite dirichlet forms and stochastic processes |h [electronic resource] / |c Sergio Albeverio, Ruzong Fan, Frederik Herzberg. |
260 | |a Berlin ; |a Heidelberg ; |a New York : |b Springer, |c ©2011. | ||
300 | |a 1 online resource (xiv, 285 pages) | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
347 | |a text file. | ||
347 | |b PDF. | ||
490 | 1 | |a Lecture notes of the Unione Matematica Italiana ; |v 10. | |
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Hyperfinite Dirichlet Formsand Stochastic Processes; Preface; Contents; Chapter 1: Hyperfinite Dirichlet Forms; 1.1 Hyperfinite Quadratic Forms; 1.2 Domain of the Symmetric Part; 1.3 Resolvent of the Symmetric Part; 1.4 Weak Coercive Quadratic Forms; 1.5 Hyperfinite Dirichlet Forms; 1.6 Hyperfinite Representations; 1.7 Weak Coercive Quadratic Forms, Revisited; Chapter 2: Potential Theory of HyperfiniteDirichlet Forms; 2.1 Exceptional Sets; 2.1.1 Exceptional Sets; 2.1.2 Co-Exceptional Sets; 2.2 Excessive Functions and Equilibrium Potentials; 2.3 Capacity Theory. | |
505 | 8 | |a 2.4 Relation of Exceptionality and Capacity Theory2.5 Measures of Hyperfinite Energy Integrals; 2.6 Internal Additive Functionals and Associated Measures; 2.7 Fukushima's Decomposition Theorem; 2.7.1 Decomposition Under the Individual Probability Measures Pi; 2.7.2 Decomposition Under the Whole Measure P; 2.8 Internal Multiplicative Functionals; 2.8.1 Internal multiplicative functionals; 2.8.2 Subordinate Semigroups; 2.8.3 Subprocesses; 2.8.4 Feynman-Kac Formulae; 2.9 Alternative Expression of Hyperfinite Dirichlet Forms; 2.10 Transformations of Symmetric Dirichlet Forms. | |
505 | 8 | |a Chapter 3: Standard Representation Theory3.1 Standard Parts of Hyperfinite Markov Chains; 3.1.1 Inner Standard Part of Sets; 3.1.2 Strong Markov Processes and ModifiedStandard Parts; 3.2 Hyperfinite Dirichlet Forms and Markov Processes; 3.2.1 Separation of Points; 3.2.2 Nearstandardly Concentrated Forms; 3.2.3 Quasi-Continuity; 3.2.4 Construction of Strong Markov Processes; Chapter 4: Construction of Markov ProcessesAssociated With Quasi-RegularDirichlet Forms; 4.1 Main Result; 4.2 Hyperfinite Lifts of Quasi-Regular Dirichlet Forms; 4.3 Relation with Capacities. | |
505 | 8 | |a 4.4 Path Regularity of Hyperfinite Markov Chains4.5 Quasi-Continuity and Nearstandard Concentration; 4.6 Construction of Strong Markov Processes; 4.7 Necessity for Existence of Dual Tight Markov Processes; Chapter 5: Hyperfinite Lévy Processes; 5.1 Standard Lévy Processes; 5.2 Hyperfinite Lévy Processes: Definitionsand Characterizations; 5.3 Standard Parts of Hyperfinite Lévy Processes; 5.4 Lindstrøm's Hyperfinite Lévy-Khintchine Formula; 5.5 Lindstrøm's Hyperfinite RepresentationTheorem for Lévy Processes; 5.6 Hyperfinite Lévy Processes: Extensionsand Applications. | |
505 | 8 | |a Chapter 6: Epilogue: Genericity of HyperfiniteLoeb Path Spaces6.1 Adapted Probability Logic; 6.2 Universality, Saturation, Homogeneity; 6.3 Hyperfinite Adapted Spaces; 6.4 Probability Logic and Markov Processes; Appendix; A.1 General Topology; A.2 Structure of * R; A.3 Internal Sets and Saturation; A.4 Loeb Measure; A.5 Linear Spaces; Historical Notes, BibliographicalComplements; References; Notation Index; Index. | |
520 | |a This monograph treats the theory of Dirichlet forms from a comprehensive point of view, using "nonstandard analysis." Thus, it is close in spirit to the discrete classical formulation of Dirichlet space theory by Beurling and Deny (1958). The discrete infinitesimal setup makes it possible to study the diffusion and the jump part using essentially the same methods. This setting has the advantage of being independent of special topological properties of the state space and in this sense is a natural one, valid for both finite- and infinite-dimensional spaces. ¡ The present monograph provides a thorough treatment of the symmetric as well as the non-symmetric case, surveys the theory of hyperfinite Lévy processes, and summarizes in an epilogue the model-theoretic genericity of hyperfinite stochastic processes theory. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Dirichlet forms. |0 http://id.loc.gov/authorities/subjects/sh85050825. | |
650 | 0 | |a Stochastic processes. |0 http://id.loc.gov/authorities/subjects/sh85128181. | |
650 | 7 | |a Dirichlet forms. |2 fast |0 (OCoLC)fst00894618. | |
650 | 7 | |a Stochastic processes. |2 fast |0 (OCoLC)fst01133519. | |
700 | 1 | |a Fan, Ruzong. |0 http://id.loc.gov/authorities/names/n2010183093 |1 http://isni.org/isni/0000000120669201. | |
700 | 1 | |a Herzberg, Frederik, |d 1981- |0 http://id.loc.gov/authorities/names/no2011107821 |1 http://isni.org/isni/0000000122124176. | |
776 | 0 | 8 | |i Print version: |z 9783642196584. |
830 | 0 | |a Lecture notes of the Unione Matematica Italiana ; |v 10. |0 http://id.loc.gov/authorities/names/no2006133097. | |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-642-19659-1 |z Full Text (via Springer) |
907 | |a .b66898742 |b 04-01-21 |c 07-20-11 | ||
998 | |a web |b 03-31-21 |c b |d b |e - |f eng |g gw |h 0 |i 1 | ||
907 | |a .b66898742 |b 03-31-21 |c 07-20-11 | ||
944 | |a MARS - RDA ENRICHED | ||
956 | |b Springer Nature - Springer Mathematics and Statistics eBooks 2011 English International | ||
915 | |a - | ||
956 | |a Springer e-books | ||
956 | |b Springer Nature - Springer Mathematics and Statistics eBooks 2011 English International | ||
999 | f | f | |i a7b11b59-18f0-5a6f-808d-fc8e55dfa19e |s a898a94f-ac8b-54b7-bd44-42519ca20bf8 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA274.2 .A43 2011 |h Library of Congress classification |i Ebooks, Prospector |n 1 |