Engineering thermodynamics with worked examples / Nihal E. Wijeysundera.

Saved in:
Bibliographic Details
Main Author: Wijeysundera, Nihal E.
Format: Book
Language:English
Published: Singapore ; Hackensack, NJ ; London : World Scientific, ©2011.
Subjects:
Table of Contents:
  • Machine generated contents note: ch. 1 Thermodynamic Systems and Properties
  • 1.1. Thermodynamics
  • 1.2. Systems and Surroundings
  • 1.2.1. Closed-system or control-mass
  • 1.2.2. Open-system or control-volume
  • 1.2.3. Isolated system
  • 1.3. Properties of a System
  • 1.3.1. Intensive properties
  • 1.3.2. Extensive properties
  • 1.4. State of System
  • 1.5. Some Basic Properties of Systems
  • 1.5.1. Pressure
  • 1.5.2. Temperature
  • 1.5.3. Temperature scales
  • 1.5.4. Density and specific volume
  • 1.6. Macroscopic and Microscopic View Points
  • 1.7. Thermodynamic Equilibrium
  • 1.7.1. Quasi-equilibrium and non-equilibrium processes
  • 1.8. Temperature Measurement and the Zeroth-Law
  • 1.8.1. The Zeroth-law of thermodynamics
  • 1.9. Worked Examples
  • Problems
  • References
  • ch. 2 Properties of Pure Substances
  • 2.1. The Pure Substance
  • 2.2. Phase Equilibrium in a Pure Substance.
  • 2.3. Phase Diagrams
  • 2.4. Independent Properties
  • 2.5. Tables and Charts of Property Data: Equation of State
  • 2.6. Ideal-Gas Equation of State
  • 2.7. Microscopic View Point
  • 2.8. Gas Laws
  • 2.9. Van der Waals Equation of State
  • 2.10. Worked Examples
  • Problems
  • References
  • ch. 3 Work and Heat Interactions
  • 3.1. Concept of Work in Mechanics
  • 3.2. Work Interactions in Thermodynamics
  • 3.2.1. Criterion for a work interaction
  • 3.3. Work Done at a Moving Boundary
  • 3.3.1. Pressure-volume diagram
  • 3.3.2. Path dependence of work done
  • 3.4. Work Done in Extending a Solid Rod
  • 3.5. Work Done in Stretching a Liquid Surface
  • 3.6. Systems Involving Electrical Work
  • 3.7. Systems Involving Magnetic Work
  • 3.8. Heat Interactions
  • 3.9. Comparison of Heat and Work
  • 3.10. Worked Examples
  • Problems
  • References
  • ch. 4 The First Law of Thermodynamics
  • 4.1. First Law for a Cyclic Process
  • 4.2. First Law for a Change of State.
  • 4.2.1. An uncoupled-system
  • 4.2.2. A coupled-system
  • 4.3. Internal Energy
  • A Thermodynamic Property
  • 4.4. State Postulate
  • 4.5. Internal Energy and Heat Capacities
  • 4.5.1. Heat capacity at constant volume
  • 4.5.2. Enthalpy
  • 4.5.3. Heat capacity at constant pressure
  • 4.6. Properties of Ideal Gases
  • 4.6.1. Internal energy, enthalpy and heat capacities of an ideal gas
  • 4.6.2. Heat capacities and kinetic theory
  • 4.7. Temperature Dependence of Heat Capacity
  • 4.8. Internal Energy and Enthalpy of a Pure Substance
  • 4.9. Worked Examples
  • Problems
  • References
  • ch. 5 First Law Analysis of Open Systems
  • 5.1. Open Systems: An Example
  • 5.2. General Form of First Law for Control Volumes
  • 5.3. Mass Conservation Law for Control Volumes
  • 5.4. Steady-Flow Energy Equation (SFEE)
  • 5.5. Fluid Mass Flow Rate in a Duct
  • 5.6. Some Steady-Flow Devices
  • 5.6.1. Nozzles and diffusers
  • 5.6.2. Turbines and compressors
  • 5.6.3. Mixing chambers and heat exchangers.
  • 5.7. Analysis of a Transient Filling Process
  • 5.8. Worked Examples
  • Problems
  • References
  • ch. 6 The Second Law of Thermodynamics
  • 6.1. The Heat Engine Cycle
  • 6.1.1. Efficiency of a heat engine cycle
  • 6.2. The Reversed Heat Engine Cycle
  • 6.2.1. Coefficient of performance of a reversed heat engine cycle
  • 6.3. The Second Law of Thermodynamics
  • 6.3.1. Equivalence of the Kelvin-Planck and Clausius statements
  • 6.4. Reversible and Irreversible Processes
  • 6.4.1. Types of irreversible processes
  • 6.4.2. Reversible heat engines and thermal reservoirs
  • 6.5. Some Consequences of the Second Law
  • 6.5.1. Efficiency of a Carnot cycle using an ideal gas
  • 6.5.2. Thermodynamic temperature scale
  • 6.5.3. Cycles interacting with a single thermal reservoir
  • 6.5.4. Cycles interacting with two thermal reservoirs
  • 6.5.5. Cycles interacting with any number of thermal reservoirs
  • 6.6. Worked Examples
  • Problems
  • References
  • ch. 7 Entropy
  • 7.1. The Clausius Inequality and Entropy.
  • 9.1. The Carnot Cycle Using a Vapor
  • 9.2. The Rankine Cycle
  • 9.2.1. Temperature-entropy and enthalpy-entropy diagrams
  • 9.2.2. Analysis of the Rankine cycle
  • 9.3. The Reheat Cycle
  • 9.3.1. Analysis of the reheat cycle
  • 9.4. The Regenerative Power Cycle
  • 9.4.1. Analysis of the regenerative cycle with open-feed-heaters
  • 9.4.2. Closed-feed-heaters
  • 9.5. The Choice of Working Fluid
  • 9.5.1. Binary vapor cycle
  • 9.5.2. Analysis of the binary vapor cycle
  • 9.5.3. Supercritical vapor power cycle
  • 9.6. Combined-Heat and Power (CHP) Cycles
  • 9.7. Deviations Between Actual and Ideal Cycles
  • 9.8. Simplified Second Law Analysis of Power Cycles
  • 9.9. Worked Examples
  • Problems
  • References
  • ch. 10 Gas Power Cycles
  • 10.1. Internal-Combustion Engine Cycles
  • 10.1.1. Spark-ignition (SI) engines
  • 10.1.2. Compression-ignition (CI) engines
  • 10.2. Air Standard Cycles
  • 10.2.1. Analysis of the Otto cycle
  • 10.2.2. Analysis of the Diesel cycle.
  • 10.2.3. The dual cycle
  • 10.3. Gas Turbine Engine Cycles
  • 10.3.1. Analysis of the Brayton cycle
  • 10.3.2. Gas turbine cycle with regeneration
  • 10.3.3. Analysis of the ideal regeneration cycle
  • 10.4. Gas Turbine Cycles with Intercooling and Reheating
  • 10.4.1. Staged-compression with intercooling
  • 10.4.2. Multi-staged expansion with reheating
  • 10.4.3. The Ericsson cycle
  • 10.5. Air-Standard Cycles for Jet propulsion
  • 10.6. Idealizations in Air-Standard Cycles
  • 10.7. Worked Examples
  • Problems
  • References
  • ch. 11 Refrigeration Cycles
  • 11.1. The Reversed-Carnot Cycle Using a Vapor
  • 11.2. The Vapor Compression Cycle
  • 11.2.1. Analysis of the vapor compression cycle
  • 11.2.2. Actual vapor compression cycle
  • 11.3. Modifications to the Vapor Compression Cycle
  • 11.3.1. Two-stage compression with flash inter-cooling
  • 11.3.2. Two-stage compression with two evaporators
  • 11.4. Refrigerants for Vapor Compression Systems.
  • 11.5. The Vapor Absorption Cycle
  • 11.5.1. The three-heat-reservoir model
  • 11.5.2. Analysis of the actual absorption cycle
  • 11.5.3. Equilibrium of water-LiBr mixtures
  • 11.6. The Air-Standard Refrigeration Cycle
  • 11.6.1. The air-standard refrigeration cycle with a heat exchanger
  • 11.7. Worked Examples
  • Problems
  • References
  • ch. 12 Gas and Gas-Vapor Mixtures
  • 12.1. Mixtures of Gases
  • 12.1.1. Mass-fraction and mole-fraction
  • 12.1.2. Partial pressure and partial volume
  • 12.1.3. Dalton's rule for ideal gas mixtures
  • 12.1.4. Amagat-Leduc rule for ideal gas mixtures
  • 12.1.5. Properties of ideal gas mixtures
  • 12.1.6. Real gas mixtures
  • 12.2. Mixtures of Ideal Gases and Vapors
  • 12.2.1. Mixtures of air and water vapor
  • 12.2.2. Relative humidity and humidity ratio
  • 12.2.3. The psychrometric chart
  • 12.2.4. Adiabatic saturation and wet-bulb temperature
  • 12.3. Processes of Air-Vapor Mixtures
  • 12.3.1. Cooling, dehumidification and heating.
  • 12.3.2. Evaporative cooling
  • 12.3.3. Cooling towers
  • 12.4. Worked Examples
  • Problems
  • References
  • ch. 13 Reactive Mixtures
  • 13.1. Chemical Reactions of Fuels
  • 13.1.1. Mass balance for a combustion reaction
  • 13.2. Energy Balance for a Combustion Process
  • 13.2.1. Enthalpy and internal energy of formation
  • 13.2.2. Internal energy and enthalpy of reactants and products
  • 13.2.3. Heats of reactions and heating values
  • 13.2.4. Adiabatic flame temperature
  • 13.3. Second Law Analysis of Combustion Processes
  • 13.4. Chemical Equilibrium
  • 13.4.1. Reactions in ideal-gas mixtures
  • 13.4.2. Dissociation
  • 13.5. Worked Examples
  • Problems
  • References.