The robust maximum principle [electronic resource] : theory and applications / by Vladimir G. Boltyanski, Alexander S. Poznyak.

Both refining and extending previous publications by the authors, the material in this¡monograph has been class-tested in mathematical institutions throughout the world. Covering some of the key areas of optimal control theory (OCT)--a rapidly expanding field that has developed to analyze the optima...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Bolti︠a︡nskiĭ, V. G. (Vladimir Grigorʹevich), 1925-2019
Other Authors: Poznyak, Alexander S.
Format: Electronic eBook
Language:English
Published: New York : Birkhäuser, ©2012.
Series:Systems & control.
Subjects:

MARC

LEADER 00000cam a2200000xa 4500
001 b6857214
006 m o d
007 cr |||||||||||
008 111116s2012 nyu ob 001 0 eng d
005 20240423171059.8
019 |a 985051636  |a 1005806079  |a 1018379844  |a 1026452010  |a 1152972199  |a 1162735245 
020 |a 9780817681524  |q (electronic bk.) 
020 |a 0817681523  |q (electronic bk.) 
020 |a 0817681515 
020 |a 9780817681517 
020 |z 9780817681517 
035 |a (OCoLC)spr761199703 
035 |a (OCoLC)761199703  |z (OCoLC)985051636  |z (OCoLC)1005806079  |z (OCoLC)1018379844  |z (OCoLC)1026452010  |z (OCoLC)1152972199  |z (OCoLC)1162735245 
037 |a spr978-0-8176-8152-4 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d COO  |d E7B  |d OTZ  |d OCLCQ  |d OCLCF  |d OCLCO  |d TPH  |d OCLCQ  |d OCLCO  |d TXI  |d OCLCQ  |d VT2  |d Z5A  |d REB  |d ESU  |d N$T  |d MERER  |d IOG  |d CEF  |d OCLCQ  |d OCLCO  |d U3W  |d WYU  |d YOU  |d TKN  |d LEAUB  |d OCLCA  |d OL$  |d OCLCO  |d OCLCQ  |d WURST  |d OCLCA  |d AJS  |d OCLCQ  |d OCLCO 
049 |a GWRE 
050 4 |a QA402.5  |b .B65 2012eb 
100 1 |a Bolti︠a︡nskiĭ, V. G.  |q (Vladimir Grigorʹevich),  |d 1925-2019.  |0 http://id.loc.gov/authorities/names/n50060993  |1 http://isni.org/isni/0000000122768350. 
245 1 4 |a The robust maximum principle  |h [electronic resource] :  |b theory and applications /  |c by Vladimir G. Boltyanski, Alexander S. Poznyak. 
260 |a New York :  |b Birkhäuser,  |c ©2012. 
300 |a 1 online resource (xxii, 432 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Systems & control : foundations & applications. 
504 |a Includes bibliographical references (pages 423-428) and index. 
505 0 |a pt. 1. Topics of classical optional control -- pt. 2. The tent method -- pt. 3. Robust maximum principle for deterministic systems -- pt. 4. Robust maximum principle for stochastic systems. 
520 |a Both refining and extending previous publications by the authors, the material in this¡monograph has been class-tested in mathematical institutions throughout the world. Covering some of the key areas of optimal control theory (OCT)--a rapidly expanding field that has developed to analyze the optimal behavior of a constrained process over time--the authors use new methods to set out a version of OCT's more refined¡'maximum principle' designed to solve the problem of constructing optimal control strategies for uncertain systems where some parameters are unknown. Referred to as a 'min-max' problem, this type of difficulty occurs frequently when dealing with finite uncertain sets. The text begins with a standalone section that reviews classical optimal control theory, ¡covering¡the principal topics of the¡maximum principle and dynamic programming and considering the important sub-problems of linear quadratic optimal control and time optimization. Moving on to examine the tent method in detail, the book then¡presents its core material, which is a more robust maximum principle for both deterministic and stochastic systems.¡The results obtained¡have applications¡in production planning, reinsurance-dividend management, multi-model sliding mode control, and multi-model differential games. Key features and topics include: * A version of the tent method in Banach spaces * How to apply the tent method to a generalization of the Kuhn-Tucker Theorem as well as the Lagrange Principle for infinite-dimensional spaces * A detailed consideration of the min-max linear quadratic (LQ) control problem * The application of obtained results from dynamic programming derivations to multi-model sliding mode control and multi-model differential games * Two examples, dealing with production planning and reinsurance-dividend management, that illustrate the use of the robust maximum principle in stochastic systems Using powerful new tools in optimal control theory, The Robust Maximum Principle explores material that will be of great interest to post-graduate students, researchers, and practitioners in applied mathematics and engineering, particularly in the area of systems and control. 
650 0 |a Mathematical optimization.  |0 http://id.loc.gov/authorities/subjects/sh85082127. 
650 0 |a Control theory  |x Mathematical models.  |0 http://id.loc.gov/authorities/subjects/sh2009121775. 
650 7 |a Control theory  |x Mathematical models.  |2 fast  |0 (OCoLC)fst00877089. 
650 7 |a Mathematical optimization.  |2 fast  |0 (OCoLC)fst01012099. 
700 1 |a Poznyak, Alexander S.  |0 http://id.loc.gov/authorities/names/n94048975  |1 http://isni.org/isni/0000000115862242. 
776 0 8 |i Print version:  |a Bolti︠a︡nskiĭ, V.G. (Vladimir Grigorʹevich), 1925-  |t Robust maximum principle.  |d New York : Birkhäuser, ©2012  |w (DLC) 2011941921. 
830 0 |a Systems & control.  |0 http://id.loc.gov/authorities/names/n88540898. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-0-8176-8152-4  |z Full Text (via Springer) 
907 |a .b68572141  |b 04-01-21  |c 12-12-11 
998 |a web  |b 03-31-21  |c b  |d b   |e -  |f eng  |g nyu  |h 4  |i 1 
907 |a .b68572141  |b 03-31-21  |c 12-12-11 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Springer e-books 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2012 English International 
956 |b Springer Nature - Springer Mathematics and Statistics eBooks 2012 English International 
999 f f |i a62c6ea5-0962-547f-afd5-6714aaf17e4e  |s e8d0151a-df67-5343-9bd8-632159003a4f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA402.5 .B65 2012eb  |h Library of Congress classification  |i Ebooks, Prospector  |n 1