Effect of initial seed and number of samples on simple-random and Latin-Hypercube Monte Carlo probabilities (confidence interval considerations) [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Sandia National Laboratories (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2000.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b6981681
003 CoU
005 20080205000000.0
006 m d f
007 cr |||||||||||
008 110824e20000504dcu o| f1|||||eng|d
035 |a (TOE)ost756096 
035 |a (TOE)756096 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 99  |2 edbsc 
086 0 |a E 1.99:sand2000-1131c 
086 0 |a E 1.99:sand2000-1131c 
088 |a sand2000-1131c 
245 0 0 |a Effect of initial seed and number of samples on simple-random and Latin-Hypercube Monte Carlo probabilities (confidence interval considerations)  |h [electronic resource] 
260 |a Washington, D.C :  |b United States. Dept. of Energy ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 2000. 
300 |a 6 pages :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 05/04/2000. 
500 |a "sand2000-1131c" 
500 |a 8th ASCE Specialty Conference on Probabilistic Mechanics and Structural Reliability, South Bend, IN (US), 07/24/2000--07/26/2000. 
500 |a ROMERO,VICENTE J. 
520 3 |a In order to devise an algorithm for autonomously terminating Monte Carlo sampling when sufficiently small and reliable confidence intervals (CI) are achieved on calculated probabilities, the behavior of CI estimators must be characterized. This knowledge is also required in comparing the accuracy of other probability estimation techniques to Monte Carlo results. Based on 100 trials in a hypothesis test, estimated 95% CI from classical approximate CI theory are empirically examined to determine if they behave as true 95% CI over spectrums of probabilities (population proportions) ranging from 0.001 to 0.99 in a test problem. Tests are conducted for population sizes of 500 and 10,000 samples where applicable. Significant differences between true and estimated 95% CI are found to occur at probabilities between 0.1 and 0.9, such that estimated 95% CI can be rejected as not being true 95% CI at less than a 40% chance of incorrect rejection. With regard to Latin Hypercube sampling (LHS), though no general theory has been verified for accurately estimating LHS CI, recent numerical experiments on the test problem have found LHS to be conservatively over an order of magnitude more efficient than SRS for similar sized CI on probabilities ranging between 0.25 and 0.75. The efficiency advantage of LHS vanishes, however, as the probability extremes of 0 and 1 are approached. 
536 |b AC04-94AL85000. 
650 7 |a Sampling.  |2 local. 
650 7 |a Algorithms.  |2 local. 
650 7 |a Probabilistic Estimation.  |2 local. 
650 7 |a Monte Carlo Method.  |2 local. 
650 7 |a Data Covariances.  |2 local. 
650 7 |a Statistics.  |2 local. 
650 7 |a Randomness.  |2 local. 
650 7 |a General And Miscellaneous//mathematics, Computing, And Information Science.  |2 edbsc. 
710 2 |a Sandia National Laboratories.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/756096-GfMBu2/webviewable/  |z Online Access 
907 |a .b69816815  |b 03-06-23  |c 03-31-12 
998 |a web  |b 03-31-12  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i 91ae8f96-6cd9-532d-9a96-b519ec0f1c14  |s 92cb5172-3ac2-592f-8131-59fa51f16fec 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:sand2000-1131c  |h Superintendent of Documents classification  |i web  |n 1