Final Report 02-ERD-056 Active Load Control& Mitigation Using Microtabs [electronic resource] : A Wind Energy Application.

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Corporate Author: Lawrence Berkeley National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy. ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2003.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b7011092
003 CoU
005 20180816232529.3
006 m o d f
007 cr |||||||||||
008 190514e20030224||| ot f0|||||eng|d
035 |a (TOE)ost15004200 
035 |a (TOE)15004200 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 17  |2 edbsc 
086 0 |a E 1.99:ucrl-id-151906 
086 0 |a E 1.99:ucrl-id-151906 
088 |a ucrl-id-151906 
245 0 0 |a Final Report 02-ERD-056 Active Load Control& Mitigation Using Microtabs  |h [electronic resource] :  |b A Wind Energy Application. 
260 |a Washington, D.C. :  |b United States. Department of Energy. ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 2003. 
300 |a PDF-file: 43 pages; size: 0 Kbytes. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 02/24/2003. 
500 |a "ucrl-id-151906" 
500 |a Nakafuji, D Y. 
520 3 |a With public concern over the security and reliability of our existing electricity infrastructure and the resurgence of wind energy, the wind industry offers an immediate, first point of entry for the application and demonstration of an active load control technology. An innovative microtab approach is being investigated and demonstrated for active aerodynamic load control applications under the mid-year LDRD (June-Sept. 2002) effort. With many of these million dollar turbines failing at only half the design lifespans, conventional techniques for stiffening rotors, enlarging generators and gearboxes, and reinforcing towers are insufficient to accommodate the demands for bigger, taller and more powerful turbines. The DOE through the National Renewable Energy Laboratory (NREL) supports R&D efforts to develop lighter, more efficient and longer lasting wind turbines and advance turbine components. However, as wind turbine systems continue to increase in size and complexity, fundamental research and technology development has not kept pace with needs. New technologies to increase turbine life spans and to reduce costs are needed to realize wind electricity generation potentials. It is becoming quite evident that without a better understanding of static and dynamic response to normal and abnormal operating loads coupled with sophisticated flow analysis and control techniques, large turbine operating life and component life will be severely limited. Promising technologies include active load control and load alleviation systems to mitigate peak loads from damaging key components. This project addresses science and engineering challenges of developing enabling technologies for active load control for turbine applications using an innovative, translational microtab approach. Figure 1.1 illustrates the microtabs as applied on a wind turbine system. Extending wind turbine operating life is a crucial component for reducing the cost of wind-generated electricity, enabling wind energy market penetration and improving the reliability of the nation's renewable electrical generation infrastructure. This project also provides enabling technologies for improving turbine efficiency and durability to support the DOE and NNSA missions of providing energy security and reliability without contributing to greenhouse gas emissions and for decreasing dependence on foreign fuel sources. In addition to wind generator applications, the realization of a ''smart'' controllable structure for load control using the microtab approach has the potential to revolutionize design of other complex systems. Driven by cost and safety, both passive and active flow control for steady and unsteady conditions have been actively investigated by NASA, DARPA, DOE and other research institutions for application on rotorcraft, UAVs, marine vessels and wind turbine applications. The potential to obtain revolutionary advances in aerodynamic hydrodynamic performance, safety, maneuverability and service life by decreasing loads is an attractive prospect across many industries. 
536 |b W-7405-ENG-48. 
650 7 |a Acoustics.  |2 local. 
650 7 |a Actuators.  |2 local. 
650 7 |a Aerodynamics.  |2 local. 
650 7 |a Efficiency.  |2 local. 
650 7 |a Electric Generators.  |2 local. 
650 7 |a Electricity.  |2 local. 
650 7 |a Mitigation.  |2 local. 
650 7 |a Peak Load.  |2 local. 
650 7 |a Reliability.  |2 local. 
650 7 |a Rotors.  |2 local. 
650 7 |a Safety.  |2 local. 
650 7 |a Security.  |2 local. 
650 7 |a Service Life.  |2 local. 
650 7 |a Turbines.  |2 local. 
650 7 |a Unsteady Flow.  |2 local. 
650 7 |a Life Span.  |2 local. 
650 7 |a Wind Power.  |2 local. 
650 7 |a Wind Turbines.  |2 local. 
650 7 |a Wind Power Industry.  |2 local. 
710 2 |a Lawrence Berkeley National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/15004200  |z Online Access (via OSTI) 
907 |a .b7011092x  |b 03-09-23  |c 03-31-12 
998 |a web  |b 05-20-19  |c f  |d m   |e p  |f eng  |g    |h 0  |i 2 
956 |a Information bridge 
999 f f |i bd22ec9c-ffe4-537e-981c-d08d168b1d94  |s 80a47347-d6cd-5caf-9fad-8cfc15b791db 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:ucrl-id-151906  |h Superintendent of Documents classification  |i web  |n 1