Structure, Stability and ELM Dynamics of the H-Mode Pedestal in DIII-D [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access (via OSTI)
Corporate Author: Lawrence Livermore National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Department of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Department of Energy, 2004.
Subjects:
Description
Abstract:Experiments are described that have increased understanding of the transport and stability physics that set the H-mode edge pedestal width and height, determine the onset of Type-I edge localized modes (ELMs), and produce the nonlinear dynamics of the ELM perturbation in the pedestal and scrape-off layer (SOL). Predictive models now exist for the n{sub e} pedestal profile and the p{sub e} height at the onset of Type-I ELMs, and progress has been made toward predictive models of the T{sub e} pedestal width and nonlinear ELM evolution. Similarity experiments between DIII-D and JET suggested that neutral penetration physics dominates in the relationship between the width and height of the n{sub e} pedestal while plasma physics dominates in setting the T{sub e} pedestal width. Measured pedestal conditions including edge current at ELM onset agree with intermediate-n peeling-ballooning (P-B) stability predictions. Midplane ELM dynamics data show the predicted (P-B) structure at ELM onset, large rapid variations of the SOL parameters, and fast radial propagation in later phases, similar to features in nonlinear ELM simulations.
Item Description:Published through SciTech Connect.
10/13/2004.
"ucrl-conf-207227"
45 12 ISSN 0029--5515.
Presented at: 20th IAEA Fusion Energy Conference, Vilamoura (PT), 11/01/2004--11/06/2004.
Fenstermacher, M E; Leonard, A W; Osborne, T H; Snyder, P B; Thomas, D M; Boedo, J A; Casper, T A; Colchin, R J; Groebner, R J; Groth, M; Kempenaars, M H; Loarte, A; Saibene, G; VanZeeland, M A; Zeng, L; Xu, X Q.
Physical Description:PDF-FILE: 14 ; SIZE: 2.2 MBYTES pages.