Damage detection in initially nonlinear systems [electronic resource]

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Los Alamos National Laboratory (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C. : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2009.
Subjects:

MARC

LEADER 00000nam a22000003u 4500
001 b7061448
003 CoU
005 20101104000000.0
006 m d f
007 cr |||||||||||
008 120331e20090101dcu o| f1|||||eng|d
035 |a (TOE)ost990776 
035 |a (TOE)990776 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 42  |2 edbsc 
086 0 |a E 1.99: la-ur-09-4363 
086 0 |a E 1.99:la-ur-09-04363 
086 0 |a E 1.99: la-ur-09-4363 
088 |a la-ur-09-04363 
088 |a la-ur-09-4363 
245 0 0 |a Damage detection in initially nonlinear systems  |h [electronic resource] 
260 |a Washington, D.C. :  |b United States. Dept. of Energy ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 2009. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 01/01/2009. 
500 |a "la-ur-09-04363" 
500 |a " la-ur-09-4363" 
500 |a International Workshop on Structural Health Monitoring ; September 9, 2009 ; Palo Alto, CA. 
500 |a Park, Gyuhae; Farrar, Charles; Bornn, Luke. 
520 3 |a The primary goal of Structural Health Monitoring (SHM) is to detect structural anomalies before they reach a critical level. Because of the potential life-safety and economic benefits, SHM has been widely studied over the past decade. In recent years there has been an effort to provide solid mathematical and physical underpinnings for these methods; however, most focus on systems that behave linearly in their undamaged state - a condition that often does not hold in complex 'real world' systems and systems for which monitoring begins mid-lifecycle. In this work, we highlight the inadequacy of linear-based methodology in handling initially nonlinear systems. We then show how the recently developed autoregressive support vector machine (AR-SVM) approach to time series modeling can be used for detecting damage in a system that exhibits initially nonlinear response. This process is applied to data acquired from a structure with induced nonlinearity tested in a laboratory environment. 
536 |b AC52-06NA25396. 
650 7 |a Detection.  |2 local. 
650 7 |a Nonlinear Problems.  |2 local. 
650 7 |a Vectors.  |2 local. 
650 7 |a Simulation.  |2 local. 
650 7 |a Monitoring.  |2 local. 
650 7 |a Economics.  |2 local. 
710 2 |a Los Alamos National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |4 spn. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/990776-fE1NqX/  |z Online Access 
907 |a .b70614489  |b 03-07-23  |c 04-03-12 
998 |a web  |b 04-03-12  |c f  |d m   |e p  |f eng  |g dcu  |h 0  |i 1 
956 |a Information bridge 
999 f f |i e02a2631-81bb-5bf1-978c-3a0fd80ba3e3  |s c6411e70-2ab0-5797-8246-5b4b421da57e 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: la-ur-09-4363  |h Superintendent of Documents classification  |i web  |n 1