Enhanced superconducting pairing interaction in indium-doped tin telluride [electronic resource]

Matsci.

Saved in:
Bibliographic Details
Online Access: Online Access
Corporate Author: Stanford Linear Accelerator Center (Researcher)
Format: Government Document Electronic eBook
Language:English
Published: Washington, D.C : Oak Ridge, Tenn. : United States. Dept. of Energy ; distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy, 2010.
Subjects:
Description
Summary:Matsci.
Abstract:The ferroelectric degenerate semiconductor Sn{sub 1-{delta}}Te exhibits superconductivity with critical temperatures, T{sub c}, of up to 0.3 K for hole densities of order 10²¹ cm⁻³. When doped on the tin site with greater than x{sub c} = 1.7(3)% indium atoms, however, superconductivity is observed up to 2 K, though the carrier density does not change significantly. We present specific heat data showing that a stronger pairing interaction is present for x > x{sub c} than for x < x{sub c}. By examining the effect of In dopant atoms on both T{sub c} and the temperature of the ferroelectric structural phase transition, T{sub SPT}, we show that phonon modes related to this transition are not responsible for this T{sub c} enhancement, and discuss a plausible candidate based on the unique properties of the indium impurities.
Item Description:Published through the Information Bridge: DOE Scientific and Technical Information.
05/03/2010.
"slac-pub-14045"
Submitted to Physical Review B FT.
Erickson, A.S.