MARC

LEADER 00000nam a22000003u 4500
001 b7213586
003 CoU
005 20070514000000.0
006 m d f
007 cr |||||||||||
008 120401e19781002cau ot f0|||||eng|d
035 |a (TOE)ost6020273 
035 |a (TOE)6020273 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 15  |2 edbsc 
072 7 |a 29  |2 edbsc 
086 0 |a E 1.99:ucrl-50046-77 
086 0 |a E 1.99:ucrl-50046-77 
088 |a ucrl-50046-77 
245 0 0 |a Lawrence Livermore Laboratory geothermal energy program. A status report on the development of the Total-Flow concept  |h [electronic resource] 
260 |a Livermore, Calif :  |b Lawrence Livermore National Laboratory ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Dept. of Energy,  |c 1978. 
300 |a Pages: 77 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through the Information Bridge: DOE Scientific and Technical Information. 
500 |a 10/02/1978. 
500 |a "ucrl-50046-77" 
500 |a Austin, A.L.; Lundberg, A.W. 
520 3 |a The technology development activities of the Geothermal Energy Program at the Lawrence Livermore Laboratory are summarized. Significant progress toward development of the Total-Flow concept was made during FY 1978. The results show that the original goal of 70% engine efficiency for the Total-Flow impulse turbine is achievable, that a Total-Flow system is competitive economically with conventional systems, and that the Total-Flow concept offers the benefit of more efficient utilization of geothermal resources for electric power production. The evaluation of several liquid expanders designed for low-temperature (including geopressured) resources suggests that if development were continued, these expanders could be used in combination with conventional systems to increase overall system efficiency. Although the program was terminated before complete field testing of prototype systems could be carried out, the concepts have been adopted in other countries (Japan and Mexico), where development is continuing. 
520 0 |a Geothermal Legacy. 
536 |b W-7405-ENG-48. 
650 7 |a Velocity-pumps Reaction Turbines.  |2 local. 
650 7 |a Geothermal Systems.  |2 local. 
650 7 |a Turbomachinery.  |2 local. 
650 7 |a Total Flow Systems.  |2 local. 
650 7 |a Hydrothermal Systems.  |2 local. 
650 7 |a Efficiency.  |2 local. 
650 7 |a Radial-outflow Reaction Turbines.  |2 local. 
650 7 |a Fluid Flow.  |2 local. 
650 7 |a Geopressured Systems.  |2 local. 
650 7 |a Nozzles.  |2 local. 
650 7 |a Turbines.  |2 local. 
650 7 |a Testing.  |2 local. 
650 7 |a Droplets.  |2 local. 
650 7 |a Particles.  |2 local. 
650 7 |a Two-phase Flow.  |2 local. 
650 7 |a Geothermal Energy Conversion.  |2 local. 
650 7 |a Energy Conversion.  |2 local. 
650 7 |a Performance Testing.  |2 local. 
650 7 |a Helical Rotary Screw Expander.  |2 local. 
650 7 |a Conversion.  |2 local. 
650 7 |a Technology Assessment.  |2 local. 
650 7 |a Hybrid Systems.  |2 local. 
650 7 |a Economics.  |2 local. 
650 7 |a Hot-water Systems.  |2 local. 
650 7 |a Geothermal Energy.  |2 edbsc. 
650 7 |a Energy Planning, Policy And Economy.  |2 edbsc. 
710 2 |a Lawrence Livermore National Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/servlets/purl/6020273-Smo9Yj/native/  |z Online Access 
907 |a .b72135864  |b 03-07-23  |c 11-08-12 
998 |a web  |b 11-08-12  |c f  |d m   |e p  |f eng  |g cau  |h 0  |i 1 
956 |a Information bridge 
999 f f |i aa9cb6ab-81e3-5ab2-b029-0a27438db9e5  |s 1fc9c23c-15f3-5e7b-b4be-765e79836c60 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99:ucrl-50046-77  |h Superintendent of Documents classification  |i web  |n 1