MARC

LEADER 00000nam a22000003u 4500
001 b7219088
003 CoU
005 20151209224915.4
006 m o d f
007 cr |||||||||||
008 160906e19760101||| o| f1|||||eng|d
035 |a (TOE)ost7106269 
035 |a (TOE)7106269 
040 |a TOE  |c TOE 
049 |a GDWR 
072 7 |a 71  |2 edbsc 
072 7 |a 70  |2 edbsc 
072 7 |a 75  |2 edbsc 
086 0 |a E 1.99: conf-761088-1 
086 0 |a E 1.99:la-ur-77-514 
086 0 |a E 1.99: conf-761088-1 
088 |a conf-761088-1 
088 |a la-ur-77-514 
245 0 0 |a General class of nonlinear bifurcation problems from a point in the essential spectrum  |h [electronic resource] :  |b application to shock wave solutions of kinetic equations. 
260 |a Los Alamos, N.M. :  |b Los Alamos Scientific Laboratory ;  |a Oak Ridge, Tenn. :  |b distributed by the Office of Scientific and Technical Information, U.S. Department of Energy,  |c 1976. 
300 |a Pages: 25 :  |b digital, PDF file. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
500 |a Published through SciTech Connect. 
500 |a 01/01/1976. 
500 |a "la-ur-77-514" 
500 |a " conf-761088-1" 
500 |a Symposium on applications of bifurcation theory, Madison, WI, USA, 27 Oct 1976. 
500 |a Nicolaenko, B. 
520 3 |a An abstract class of bifurcation problems is investigated from the essential spectrum of the associated Frechet derivative. This class is a very general framework for the theory of one-dimensional, steady-profile traveling- shock-wave solutions to a wide family of kinetic integro-differential equations from nonequilibrium statistical mechanics. Such integro-differential equations usually admit the Navier--Stokes system of compressible gas dynamics or the MHD systems in plasma dynamics as a singular limit, and exhibit similar viscous shock layer solutions. The mathematical methods associated with systems of partial differential equations must, however, be replaced by the considerably more complex Bifurcation Theory setting. A hierarchy of bifurcation problems is considered, starting with a simple bifurcation problem from a simple eigenvalue. Sections are entitled as follows: introduction and background from mechanics; the mathematical problem: principal results; a generalized operational calculus, and the derivation of the generalized Lyapunov--Schmidt equations; and methods of solution for the Lyapunov--Schmidt and the functional differential equations. 1 figure. (RWR) 
536 |b W-7405-ENG-36. 
650 7 |a Collisional Plasma.  |2 local. 
650 7 |a Shock Waves.  |2 local. 
650 7 |a Compressible Flow.  |2 local. 
650 7 |a Differential Equations.  |2 local. 
650 7 |a Analytical Solution.  |2 local. 
650 7 |a Magnetohydrodynamics.  |2 local. 
650 7 |a Boltzmann Equation.  |2 local. 
650 7 |a Fluid Flow.  |2 local. 
650 7 |a Integral Equations.  |2 local. 
650 7 |a Kinetic Equations.  |2 local. 
650 7 |a Navier-Stokes Equation.  |2 local. 
650 7 |a One-Dimensional Calculations.  |2 local. 
650 7 |a Statistical Mechanics.  |2 local. 
650 7 |a Travelling Waves.  |2 local. 
650 7 |a Viscous Flow.  |2 local. 
650 7 |a Equations.  |2 local. 
650 7 |a Fluid Mechanics.  |2 local. 
650 7 |a Hydrodynamics.  |2 local. 
650 7 |a Mechanics.  |2 local. 
650 7 |a Plasma.  |2 local. 
650 7 |a Classical And Quantum Mechanics, General Physics.  |2 edbsc. 
650 7 |a Plasma Physics And Fusion Technology.  |2 edbsc. 
650 7 |a Condensed Matter Physics, Superconductivity And Superfluidity.  |2 edbsc. 
710 2 |a Los Alamos Scientific Laboratory.  |4 res. 
710 1 |a United States.  |b Department of Energy.  |b Office of Scientific and Technical Information.  |4 dst. 
856 4 0 |u http://www.osti.gov/scitech/biblio/7106269  |z Online Access 
907 |a .b72190887  |b 03-07-23  |c 11-08-12 
998 |a web  |b 09-09-16  |c f  |d m   |e p  |f eng  |g    |h 0  |i 3 
956 |a Information bridge 
999 f f |i 4d254ec6-150c-5634-be4d-391a5de652bc  |s f1df4e6f-af87-599f-af49-7e5f2c9ac98b 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e E 1.99: conf-761088-1  |h Superintendent of Documents classification  |i web  |n 1