Radial basis function (RBF) neural network control for mechanical systems : design, analysis and Matlab simulation / Jinkun Liu.

Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design metho...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Main Author: Liu, Jinkun, 1965-
Format: eBook
Language:English
Published: Berlin ; New York : Beijing : Springer ; Tsinghua Univ. Press, ©2013.
Subjects:

MARC

LEADER 00000cam a2200000Ka 4500
001 b7329235
006 m o d
007 cr |||||||||||
008 130131s2013 gw ob 001 0 eng d
005 20240418144540.3
019 |a 827212395  |a 836201590  |a 957524228  |a 957599517  |a 961594232 
020 |a 9783642348167  |q (electronic bk.) 
020 |a 3642348165  |q (electronic bk.) 
020 |a 9783642348150 
020 |a 3642348157 
020 |z 9787302302551 
020 |z 3642348157 
020 |z 9781299337596 
020 |z 1299337597 
035 |a (OCoLC)spr826122634 
035 |a (OCoLC)826122634  |z (OCoLC)827212395  |z (OCoLC)836201590  |z (OCoLC)957524228  |z (OCoLC)957599517  |z (OCoLC)961594232 
037 |a spr10.1007/978-3-642-34816-7 
040 |a GW5XE  |b eng  |e pn  |c GW5XE  |d YDXCP  |d COO  |d ZMC  |d CDX  |d OCLCO  |d SNK  |d N$T  |d IDEBK  |d E7B  |d OCLCF  |d GGVRL  |d BEDGE  |d EBLCP  |d DEBSZ  |d OCLCQ  |d DIBIB  |d AZK 
049 |a GWRE 
050 4 |a TJ213  |b .L58 2013 
100 1 |a Liu, Jinkun,  |d 1965- 
245 1 0 |a Radial basis function (RBF) neural network control for mechanical systems :  |b design, analysis and Matlab simulation /  |c Jinkun Liu. 
260 |a Berlin ;  |a New York :  |b Springer ;  |a Beijing :  |b Tsinghua Univ. Press,  |c ©2013. 
300 |a 1 online resource. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
380 |a Bibliography. 
505 0 0 |g Introduction --  |t RBF Neural Network Design and Simulation --  |t RBF Neural Network Control Based on Gradient Descent Algorithm --  |t Adaptive RBF Neural Network Control --  |t Neural Network Sliding Mode Control --  |t Adaptive RBF Control Based on Global Approximation --  |t Adaptive Robust RBF Control Based on Local Approximation --  |t Backstepping Control with RBF --  |t Digital RBF Neural Network Control --  |t Discrete Neural Network Control --  |t Adaptive RBF Observer Design and Sliding Mode Control. 
504 |a Includes bibliographical references and index. 
520 |a Radial Basis Function (RBF) Neural Network Control for Mechanical Systems is motivated by the need for systematic design approaches to stable adaptive control system design using neural network approximation-based techniques. The main objectives of the book are to introduce the concrete design methods and MATLAB simulation of stable adaptive RBF neural control strategies. In this book, a broad range of implementable neural network control design methods for mechanical systems are presented, such as robot manipulators, inverted pendulums, single link flexible joint robots, motors, etc. Advanced neural network controller design methods and their stability analysis are explored. The book provides readers with the fundamentals of neural network control system design. This book is intended for the researchers in the fields of neural adaptive control, mechanical systems, Matlab simulation, engineering design, robotics and automation. Jinkun Liu is a professor at Beijing University of Aeronautics and Astronautics. 
650 0 |a Automatic control. 
650 0 |a Neural networks (Computer science) 
650 0 |a Radial basis functions. 
650 7 |a Automatic control.  |2 fast  |0 (OCoLC)fst00822702. 
650 7 |a Neural networks (Computer science)  |2 fast  |0 (OCoLC)fst01036260. 
650 7 |a Radial basis functions.  |2 fast  |0 (OCoLC)fst01086830. 
776 0 8 |i Print version:  |z 9781299337596. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-642-34816-7  |z Full Text (via Springer) 
907 |a .b73292357  |b 03-27-21  |c 02-26-13 
998 |a web  |b 05-01-17  |c f  |d b   |e -  |f eng  |g gw   |h 0  |i 1 
907 |a .b73292357  |b 05-09-17  |c 02-26-13 
915 |a K 
956 |a Springer e-books 
956 |b Springer Nature - Springer Engineering eBooks 2013 English International 
956 |b Springer Nature - Springer Engineering eBooks 2013 English International 
999 f f |i 4fec5285-3ca4-52fe-bd4b-eb940609967d  |s 8191f611-6521-5270-a806-67706ccc6f4f 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e TJ213 .L58 2013  |h Library of Congress classification  |i Ebooks, Prospector  |n 1