Policy Building [electronic resource] : An Extension to User Modeling / Michael V. Yudelson and Emma Brunskill.

In this paper we combine a logistic regression student model with an exercise selection procedure. As opposed to the body of prior work on strategies for selecting practice opportunities, we are working on an assumption of a finite amount of opportunities to teach the student. Our goal is to prescri...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via ERIC)
Main Authors: Yudelson, Michael V., Brunskill, Emma (Author)
Corporate Author: International Educational Data Mining Society
Format: Electronic eBook
Language:English
Published: [S.l.] : Distributed by ERIC Clearinghouse, 2012.
Subjects:

MARC

LEADER 00000nam a22000002u 4500
001 b7343624
003 CoU
005 20130109084420.7
006 m o d f
007 cr |||||||||||
008 120601s2012 xx |||| ot ||| | eng d
035 |a (ERIC)ed537226 
035 |a (MvI) 5G000000519307 
040 |a ericd  |c MvI  |d MvI 
099 |a ED537226 
099 |a ED537226 
100 1 |a Yudelson, Michael V. 
245 1 0 |a Policy Building  |h [electronic resource] :  |b An Extension to User Modeling /  |c Michael V. Yudelson and Emma Brunskill. 
260 |a [S.l.] :  |b Distributed by ERIC Clearinghouse,  |c 2012. 
300 |a 4 p. 
500 |a Availability: International Educational Data Mining Society. e-mail: admin@educationaldatamining.org; Web site: http://www.educationaldatamining.org.  |5 ericd. 
500 |a Sponsoring Agency: Department of Education (ED).  |5 ericd. 
500 |a Sponsoring Agency: Pittsburgh Science of Learning Center.  |5 ericd. 
500 |a Sponsoring Agency: Carnegie Learning, Inc.  |5 ericd. 
500 |a Abstractor: As Provided.  |5 ericd. 
500 |a Educational level discussed: Grade 6. 
500 |a Educational level discussed: Grade 7. 
500 |a Educational level discussed: Middle Schools. 
516 |a Text (Reports, Evaluative) 
516 |a Text (Speeches/Meeting Papers) 
520 |a In this paper we combine a logistic regression student model with an exercise selection procedure. As opposed to the body of prior work on strategies for selecting practice opportunities, we are working on an assumption of a finite amount of opportunities to teach the student. Our goal is to prescribe activities that would maximize the amount learned as evaluated by expected post-test success. We evaluate the proposed approach using an existing dataset where data was collected performing random skill selection. Our results cautiously support the hypothesis that using policies designed to optimize the post-test score associated with higher learning outcomes, but more work is needed. (Contains 2 figures, 3 tables, and 1 footnote.) [For the complete proceedings, "Proceedings of the International Conference on Educational Data Mining (EDM) (5th, Chania, Greece, June 19-21, 2012)," see ED537074.] 
524 |a International Educational Data Mining Society, Paper presented at the International Conference on Educational Data Mining (EDM) (5th, Chania, Greece, Jun 19-21, 2012).  |2 ericd. 
650 0 7 |a Scores.  |2 ericd. 
650 0 7 |a Tests.  |2 ericd. 
650 0 7 |a Regression (Statistics)  |2 ericd. 
650 0 7 |a Pretests Posttests.  |2 ericd. 
650 0 7 |a Data.  |2 ericd. 
650 0 7 |a Factor Analysis.  |2 ericd. 
650 0 7 |a Algebra.  |2 ericd. 
650 0 7 |a Mathematics Instruction.  |2 ericd. 
650 0 7 |a Grade 6.  |2 ericd. 
650 0 7 |a Grade 7.  |2 ericd. 
650 0 7 |a Middle School Students.  |2 ericd. 
650 0 7 |a Tutoring.  |2 ericd. 
650 0 7 |a Academic Achievement.  |2 ericd. 
700 1 |a Brunskill, Emma,  |e author. 
710 2 |a International Educational Data Mining Society. 
856 4 0 |u http://files.eric.ed.gov/fulltext/ED537226.pdf  |z Full Text (via ERIC) 
907 |a .b73436240  |b 07-06-22  |c 04-03-13 
998 |a web  |b 04-03-13  |c f  |d m   |e -  |f eng  |g xx   |h 0  |i 1 
956 |a ERIC 
999 f f |i ba124ffd-93ea-582b-a5da-3110839338c1  |s b563c599-8ffc-5eff-b199-ef8428e58cfa 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e ED537226  |h Other scheme  |i web  |n 1