An introduction to Kalman filtering with MATLAB examples / Narayan Kovvali, Mahesh Banavar, and Andreas Spanias.
Saved in:
Online Access: |
Full Text (via Morgan & Claypool) Full Text (via Morgan & Claypool) |
---|---|
Main Authors: | , , |
Format: | eBook |
Language: | English |
Published: |
San Rafael, California (1537 Fourth Street, San Rafael, CA 94901 USA) :
Morgan & Claypool,
2014.
|
Series: | Synthesis lectures on signal processing (Online) ;
# 12. |
Subjects: |
Table of Contents:
- 1. Introduction
- 2. The estimation problem
- 2.1 Background
- 2.1.1 Example: maximum-likelihood estimation in Gaussian noise
- 2.2 Linear estimation
- 2.3 The Bayesian approach to parameter estimation
- 2.3.1 Example: estimating the bias of a coin
- 2.4 Sequential Bayesian estimation
- 2.4.1 Example: the 1-D Kalman filter
- 3. The Kalman filter
- 3.1 Theory
- 3.2 Implementation
- 3.2.1 Sample MATLAB code
- 3.2.2 Computational issues
- 3.3 Examples
- 3.3.1 Target tracking with radar
- 3.3.2 Channel estimation in communications systems
- 3.3.3 Recursive least squares (RLS) adaptive filtering
- 4. Extended and decentralized Kalman filtering
- 4.1 Extended Kalman filter
- 4.1.1 Example: predator-prey system
- 4.2 Decentralized Kalman filtering
- 4.2.1 Example: distributed object tracking
- 5. Conclusion
- Notation
- Bibliography
- Authors' biographies.