Large-scale data analytics / Aris Gkoulalas-Divanis, Abderrahim Labbi, editors.

This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputi...

Full description

Saved in:
Bibliographic Details
Online Access: Full Text (via Springer)
Other Authors: Gkoulalas-Divanis, Aris (Editor), Labbi, Abderrahim (Editor)
Format: eBook
Language:English
Published: New York : Springer, [2014]
Subjects:

MARC

LEADER 00000cam a2200000xi 4500
001 b7728516
006 m o d
007 cr |||||||||||
008 140226s2014 nyua ob 001 0 eng d
005 20240418150557.2
019 |a 871858216  |a 964893270  |a 990463511  |a 1005809156  |a 1048133551  |a 1058390134  |a 1066511506  |a 1110817363  |a 1112525794  |a 1113419102  |a 1162686009 
020 |a 9781461492429  |q (electronic bk.) 
020 |a 1461492424  |q (electronic bk.) 
020 |z 9781461492412 
020 |z 1461492416 
024 7 |a 10.1007/978-1-4614-9242-9 
035 |a (OCoLC)spr871042971 
035 |a (OCoLC)871042971  |z (OCoLC)871858216  |z (OCoLC)964893270  |z (OCoLC)990463511  |z (OCoLC)1005809156  |z (OCoLC)1048133551  |z (OCoLC)1058390134  |z (OCoLC)1066511506  |z (OCoLC)1110817363  |z (OCoLC)1112525794  |z (OCoLC)1113419102  |z (OCoLC)1162686009 
037 |a spr978-1-4614-9242-9 
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d NGU  |d IDEBK  |d GW5XE  |d DKDLA  |d GGVRL  |d COO  |d CDX  |d OCLCF  |d OCLCQ  |d YDXCP  |d B24X7  |d EBLCP  |d E7B  |d VT2  |d DEBSZ  |d OCLCQ  |d DIBIB  |d JG0  |d LIV  |d OCLCQ  |d ESU  |d OCLCQ  |d IOG  |d NJR  |d BUF  |d CEF  |d DEHBZ  |d OCLCQ  |d U3W  |d OCLCQ  |d WYU  |d YOU  |d UKAHL  |d OL$  |d OCLCQ  |d DCT  |d ERF  |d OCLCQ  |d BRF  |d OCLCQ 
049 |a GWRE 
050 4 |a QA76.9.D343 
245 0 0 |a Large-scale data analytics /  |c Aris Gkoulalas-Divanis, Abderrahim Labbi, editors. 
264 1 |a New York :  |b Springer,  |c [2014] 
264 4 |c ©2014. 
300 |a 1 online resource (xxiii, 257 pages) :  |b illustrations. 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
347 |a text file. 
347 |b PDF. 
504 |a Includes bibliographical references and index. 
505 0 |a The Family of Map-Reduce -- Optimization of Massively Parallel Data Flows -- Mining Tera-Scale Graphs with "Pegasus" -- Customer Analyst for the Telecom Industry -- Machine Learning Algorithm Acceleration using Hybrid (CPU-MPP) MapReduce Clusters -- Large-Scale Social Network Analysis -- Visual Analysis and Knowledge Discovery for Text -- Practical Distributed Privacy-Preserving Data Analysis at Large Scale. 
520 8 |a This edited book collects state-of-the-art research related to large-scale data analytics that has been accomplished over the last few years. This is among the first books devoted to this important area based on contributions from diverse scientific areas such as databases, data mining, supercomputing, hardware architecture, data visualization, statistics, and privacy. There is increasing need for new approaches and technologies that can analyze and synthesize very large amounts of data, in the order of petabytes, that are generated by massively distributed data sources. This requires new distributed architectures for data analysis. Additionally, the heterogeneity of such sources imposes significant challenges for the efficient analysis of the data under numerous constraints, including consistent data integration, data homogenization and scaling, privacy and security preservation. The authors also broaden reader understanding of emerging real-world applications in domains such as customer behavior modeling, graph mining, telecommunications, cyber-security, and social network analysis, all of which impose extra requirements for large-scale data analysis. Large-Scale Data Analytics is organized in 8 chapters, each providing a survey of an important direction of large-scale data analytics or individual results of the emerging research in the field. The book presents key recent research that will help shape the future of large-scale data analytics, leading the way to the design of new approaches and technologies that can analyze and synthesize very large amounts of heterogeneous data. Students, researchers, professionals and practitioners will find this book an authoritative and comprehensive resource. 
588 0 |a Print version record. 
650 0 |a Data mining.  |0 http://id.loc.gov/authorities/subjects/sh97002073. 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946. 
700 1 |a Gkoulalas-Divanis, Aris,  |e editor.  |0 http://id.loc.gov/authorities/names/nb2010016827  |1 http://isni.org/isni/0000000106429850. 
700 1 |a Labbi, Abderrahim,  |e editor.  |0 http://id.loc.gov/authorities/names/n2004102464  |1 http://isni.org/isni/0000000040080130. 
776 0 8 |i Print version:  |t Large-scale data analytics  |z 9781461492412  |w (OCoLC)870324636. 
856 4 0 |u https://colorado.idm.oclc.org/login?url=https://link.springer.com/10.1007/978-1-4614-9242-9  |z Full Text (via Springer) 
907 |a .b77285165  |b 12-01-21  |c 05-22-14 
998 |a web  |b 11-30-21  |c b  |d b   |e -  |f eng  |g nyu  |h 0  |i 1 
907 |a .b77285165  |b 11-30-21  |c 05-22-14 
944 |a MARS - RDA ENRICHED 
915 |a - 
956 |a Springer e-books 
956 |b Springer Nature - Springer Computer Science eBooks 2014 English International 
956 |b Springer Nature - Springer Computer Science eBooks 2014 English International 
999 f f |i 845d62e6-06c2-5a91-97a8-891b0e102dcf  |s d31ae50e-d4a0-5f69-b22e-b7f36a8c110a 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA76.9.D343  |h Library of Congress classification  |i Ebooks, Prospector  |n 1