Decay of the Fourier transform : analytic and geometric aspects / Alex Iosevich, Elijah Liflyand.
The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions an...
Saved in:
Online Access: |
Full Text (via Springer) |
---|---|
Main Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Basel :
Birkhäuser,
[2014]
|
Subjects: |
MARC
LEADER | 00000cam a2200000xi 4500 | ||
---|---|---|---|
001 | b7846945 | ||
006 | m o d | ||
007 | cr ||||||||||| | ||
008 | 141010s2014 sz ob 001 0 eng d | ||
005 | 20240423171256.8 | ||
020 | |a 9783034806251 |q (electronic bk.) | ||
020 | |a 3034806256 |q (electronic bk.) | ||
020 | |z 9783034806244 | ||
020 | |z 3034806248 | ||
024 | 7 | |a 10.1007/978-3-0348-0625-1 | |
035 | |a (OCoLC)spr892747075 | ||
035 | |a (OCoLC)892747075 | ||
037 | |a spr10.1007/978-3-0348-0625-1 | ||
040 | |a N$T |b eng |e rda |e pn |c N$T |d GW5XE |d YDXCP |d UPM |d COO |d OCLCF |d OCLCQ | ||
049 | |a GWRE | ||
050 | 4 | |a QA403.5 | |
100 | 1 | |a Iosevich, Alex, |d 1967- |e author. |0 http://id.loc.gov/authorities/names/n2007047687 |1 http://isni.org/isni/0000000114440208. | |
245 | 1 | 0 | |a Decay of the Fourier transform : |b analytic and geometric aspects / |c Alex Iosevich, Elijah Liflyand. |
264 | 1 | |a Basel : |b Birkhäuser, |c [2014] | |
264 | 4 | |c ©2014. | |
300 | |a 1 online resource. | ||
336 | |a text |b txt |2 rdacontent. | ||
337 | |a computer |b c |2 rdamedia. | ||
338 | |a online resource |b cr |2 rdacarrier. | ||
504 | |a Includes bibliographical references and index. | ||
505 | 0 | |a Foreword -- Introduction -- Chapter 1. Basic properties of the Fourier transform -- Chapter 2. Oscillatory integrals and Fourier transforms in one variable -- Chapter 3. The Fourier transform of an oscillating function -- Chapter 4. The Fourier transform of a radial function -- Chapter 5. Multivariate extensions -- Appendix -- Bibliography. | |
520 | |a The Plancherel formula says that the L2 norm of the function is equal to the L2 norm of its Fourier transform. This implies that at least on average, the Fourier transform of an L2 function decays at infinity. This book is dedicated to the study of the rate of this decay under various assumptions and circumstances, far beyond the original L2 setting. Analytic and geometric properties of the underlying functions interact in a seamless symbiosis which underlines the wide range influences and applications of the concepts under consideration. | ||
588 | 0 | |a Print version record. | |
650 | 0 | |a Fourier analysis. |0 http://id.loc.gov/authorities/subjects/sh85051088. | |
650 | 0 | |a Geometric analysis. |0 http://id.loc.gov/authorities/subjects/sh2008008771. | |
650 | 7 | |a Fourier analysis. |2 fast |0 (OCoLC)fst00933401. | |
650 | 7 | |a Geometric analysis. |2 fast |0 (OCoLC)fst01747051. | |
700 | 1 | |a Liflyand, Elijah, |e author. |0 http://id.loc.gov/authorities/names/no2015023802 |1 http://isni.org/isni/0000000443339602. | |
776 | 0 | 8 | |i Print version: |t Decay of the Fourier Transform |z 9783034806244 |w (OCoLC)837135994. |
856 | 4 | 0 | |u https://colorado.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-0348-0625-1 |z Full Text (via Springer) |
907 | |a .b78469454 |b 03-19-20 |c 11-12-14 | ||
998 | |a web |b 05-01-17 |c g |d b |e - |f eng |g sz |h 0 |i 1 | ||
907 | |a .b78469454 |b 07-02-19 |c 11-12-14 | ||
944 | |a MARS - RDA ENRICHED | ||
907 | |a .b78469454 |b 07-06-17 |c 11-12-14 | ||
907 | |a .b78469454 |b 05-23-17 |c 11-12-14 | ||
915 | |a I | ||
956 | |a Springer e-books | ||
956 | |b Springer Nature - Springer Mathematics and Statistics eBooks 2014 English International | ||
956 | |b Springer Nature - Springer Mathematics and Statistics eBooks 2014 English International | ||
999 | f | f | |i d14cd411-5ccc-538b-a852-98a97f437aeb |s 6fa9494e-9fa7-5198-bd73-21c2d207c717 |
952 | f | f | |p Can circulate |a University of Colorado Boulder |b Online |c Online |d Online |e QA403.5 |h Library of Congress classification |i Ebooks, Prospector |n 1 |