Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres / J.-M. Delort.

"The Hamiltonian X([vertical line][delta]tu[vertical line]2+[vertical line][delta]u[vertical line]2+m2[vertical line]u[vertical line]2) dx, defined on functions on R x X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. We consider per...

Full description

Saved in:
Bibliographic Details
Online Access: Online Access
Connect to abstract, references, and article information e
Main Author: Delort, Jean-Marc, 1961- (Author)
Format: eBook
Language:English
Published: Providence, Rhode Island : American Mathematical Society, 2015.
Series:Memoirs of the American Mathematical Society ; no. 1103.
Subjects:

MARC

LEADER 00000cam a2200000Ii 4500
001 b7937909
003 CoU
005 20150416112322.0
006 m o d
007 cr un|||||||||
008 150406t20152014riu ob 000 0 eng d
020 |a 9781470420307 
020 |a 1470420309 
020 |z 9781470409838 
020 |z 1470409836 
035 |a (OCoLC)ocn906578689 
035 |a (OCoLC)906578689 
040 |a GZM  |b eng  |e rda  |e pn  |c GZM  |d GZM  |d UIU 
049 |a CODA 
050 4 |a QA614.83  |b .D45 2015 
100 1 |a Delort, Jean-Marc,  |d 1961-  |e author.  |0 http://id.loc.gov/authorities/names/n92066079  |1 http://isni.org/isni/0000000110840634. 
245 1 0 |a Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres /  |c J.-M. Delort. 
264 1 |a Providence, Rhode Island :  |b American Mathematical Society,  |c 2015. 
264 4 |c ©2014. 
300 |a 1 online resource (v, 80 pages) 
336 |a text  |b txt  |2 rdacontent. 
337 |a computer  |b c  |2 rdamedia. 
338 |a online resource  |b cr  |2 rdacarrier. 
490 1 |a Memoirs of the American Mathematical Society,  |x 0065-9266 ;  |v volume 234, number 1103. 
504 |a Includes bibliographical references (pages 79-80) 
500 |a "Volume 234, number 1103 (third of 5 numbers), March 2015." 
520 |a "The Hamiltonian X([vertical line][delta]tu[vertical line]2+[vertical line][delta]u[vertical line]2+m2[vertical line]u[vertical line]2) dx, defined on functions on R x X, where X is a compact manifold, has critical points which are solutions of the linear Klein-Gordon equation. We consider perturbations of this Hamiltonian, given by polynomial expressions depending on first order derivatives of u. The associated PDE is then a quasi-linear Klein-Gordon equation. We show that, when X is the sphere, and when the mass parameter m is outside an exceptional subset of zero measure, smooth Cauchy data of small size give rise to almost global solutions, i.e. solutions defined on a time interval of length cN-N for any N. Previous results were limited either to the semi-linear case (when the perturbation of the Hamiltonian depends only on u) or to the one dimensional problem. The proof is based on a quasi-linear version of the Birkhoff normal forms method, relying on convenient generalizations of para-differential calculus."--P.v. 
588 |a Description based on print version record. 
650 0 |a Hamiltonian systems.  |0 http://id.loc.gov/authorities/subjects/sh85058563. 
650 0 |a Klein-Gordon equation.  |0 http://id.loc.gov/authorities/subjects/sh89006586. 
650 0 |a Wave equation.  |0 http://id.loc.gov/authorities/subjects/sh85145778. 
650 0 |a Sphere.  |0 http://id.loc.gov/authorities/subjects/sh85126590. 
650 7 |a Hamiltonian systems.  |2 fast  |0 (OCoLC)fst00950772. 
650 7 |a Klein-Gordon equation.  |2 fast  |0 (OCoLC)fst00988012. 
650 7 |a Sphere.  |2 fast  |0 (OCoLC)fst01129664. 
650 7 |a Wave equation.  |2 fast  |0 (OCoLC)fst01172869. 
776 0 8 |i Print version:  |a Delort, Jean-Marc, 1961-  |t Quasi-linear perturbations of Hamiltonian Klein-Gordon equations on spheres.  |d Providence, Rhode Island : American Mathematical Society, 2015  |z 9781470409838  |w (DLC) 2014041958  |w (OCoLC)893784434. 
830 0 |a Memoirs of the American Mathematical Society ;  |v no. 1103.  |0 http://id.loc.gov/authorities/names/n83703151. 
856 4 0 |z Online Access  |u https://colorado.idm.oclc.org/login?url=http://www.ams.org/books/memo/1103/memo1103.pdf 
856 4 2 |z Connect to abstract, references, and article information e  |u https://colorado.idm.oclc.org/login?url=http://dx.doi.org/10.1090/memo/1103 
907 |a .b79379096  |b 03-08-23  |c 04-16-15 
998 |a web  |b 04-16-15  |c a  |d b   |e -  |f eng  |g riu  |h 0  |i 1 
907 |a .b79379096  |b 07-21-17  |c 04-16-15 
944 |a MARS - RDA ENRICHED 
907 |a .b79379096  |b 12-27-16  |c 04-16-15 
907 |a .b79379096  |b 04-16-15  |c 04-16-15 
946 |a cah 
999 f f |i 9e0a23b8-f2eb-5bb3-82f3-523a1ecdd37d  |s 7c178784-35a2-562a-8176-d83b14375407 
952 f f |p Can circulate  |a University of Colorado Boulder  |b Online  |c Online  |d Online  |e QA614.83 .D45 2015  |h Library of Congress classification  |i web  |n 1